共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of inositol 1,4,5-trisphosphate kinase in retina. A direct demonstration of phosphorylation of inositol 1,4,5-trisphosphate by ATP.
下载免费PDF全文

The metabolism of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] consists of two pathways: dephosphorylation by 5-phosphomonoesterase(s) produces inositol 1,4-bisphosphate, and phosphorylation by Ins(1,4,5)P3 3-kinase yields inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The requirements for Ins(1,4,5)P3 kinase activity in retina were characterized. Apparent Km values for ATP and Ins(1,4,5)P3 are 1.4 mM and 1.3 microM respectively. A direct demonstration of phosphorylation of Ins(1,4,5)P3 by [gamma-32P]ATP was achieved. Characterization of the 32P-labelled product revealed that it had the expected chromatographic and electrophoretic properties of Ins(1,3,4,5)P4. 相似文献
2.
Sipma H De Smet P Sienaert I Vanlingen S Missiaen L Parys JB De Smedt H 《The Journal of biological chemistry》1999,274(17):12157-12162
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1. 相似文献
3.
Vermassen E Fissore RA Nadif Kasri N Vanderheyden V Callewaert G Missiaen L Parys JB De Smedt H 《Biochemical and biophysical research communications》2004,319(3):888-893
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献
4.
Ramos J Jung W Ramos-Franco J Mignery GA Fill M 《The Journal of general physiology》2003,121(5):399-411
The InsP3R proteins have three recognized domains, the InsP3-binding, regulatory/coupling, and channel domains (Mignery, G.A., and T.C. Südhof. 1990. EMBO J. 9:3893-3898). The InsP3 binding domain and the channel-forming domain are at opposite ends of the protein. Ligand regulation of the channel must involve communication between these different regions of the protein. This communication likely involves the interceding sequence (i.e., the regulatory/coupling domain). The single channel functional attributes of the full-length recombinant type-1, -2, and -3 InsP3R channels have been defined. Here, two type-1/type-2 InsP3R regulatory/coupling domain chimeras were created and their single channel function defined. One chimera (1-2-1) contained the type-2 regulatory/coupling domain in a type-1 backbone. The other chimera (2-1-2) contained the type-1 regulatory/coupling domain in a type-2 backbone. These chimeric proteins were expressed in COS cells, isolated, and then reconstituted in proteoliposomes. The proteoliposomes were incorporated into artificial planar lipid bilayers and the single-channel function of the chimeras defined. The chimeras had permeation properties like that of wild-type channels. The ligand regulatory properties of the chimeras were altered. The InsP3 and Ca2+ regulation had some unique features but also had features in common with wild-type channels. These results suggest that different independent structural determinants govern InsP3R permeation and ligand regulation. It also suggests that ligand regulation is a multideterminant process that involves several different regions of the protein. This study also demonstrates that a chimera approach can be applied to define InsP3R structure-function. 相似文献
5.
Cui J Matkovich SJ deSouza N Li S Rosemblit N Marks AR 《The Journal of biological chemistry》2004,279(16):16311-16316
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3. 相似文献
6.
7.
Single channel function of recombinant type-1 inositol 1,4,5-trisphosphate receptor ligand binding domain splice variants. 总被引:1,自引:0,他引:1
下载免费PDF全文

In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the single channel properties of the recombinant receptors were defined. The unitary conductance of the two splice variants were approximately 290 pS with Cs+ as charge carrier and approximately 65 pS with Ca2+ as charge carrier. Both InsP3R expression products consistently behaved like those of the native type-1 receptor isoform isolated from cerebellum in terms of their InsP3, Ca2+, and heparin sensitivity. An InsP3 receptor ligand binding domain truncation lacking the 310 amino-terminal amino acids (pInsP3R-DeltaT1ALT) formed tetrameric complexes but failed to bind InsP3 with high affinity, and did not form functional Ca2+ channels when reconstituted in lipid bilayers. These data suggest that 1) the ligand binding alternative splice site is functionally inert in terms of InsP3 binding and single channel function, and 2) the single channel properties of the expressed recombinant type-1 channel are essentially identical to those of the native channel. This work establishes a foundation from which molecular/biophysical approaches can be used to define the structure-function properties of the InsP3 receptor channel family. 相似文献
8.
Veerle Vanderheyden Takuya Wakai Geert Bultynck Humbert De Smedt Jan B. Parys Rafael A. Fissore 《Cell calcium》2009,46(1):56-64
Egg activation and further embryo development require a sperm-induced intracellular Ca2+ signal at the time of fertilization. Prior to fertilization, the egg's Ca2+ machinery is therefore optimized. To this end, during oocyte maturation, the sensitivity, i.e. the Ca2+ releasing ability, of the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), which is responsible for most of this Ca2+ release, markedly increases. In this study, the recently discovered specific Polo-like kinase (Plk) inhibitor BI2536 was used to investigate the role of Plk1 in this process. BI2536 inactivates Plk1 in oocytes at the early stages of maturation and significantly decreases IP3R1 phosphorylation at an MPM-2 epitope at this stage. Moreover, this decrease in Plk1-dependent MPM-2 phosphorylation significantly lowers IP3R1 sensitivity. Finally, using in vitro phosphorylation techniques we identified T2656 as a major Plk1 site on IP3R1. We therefore propose that the initial increase in IP3R1 sensitivity during oocyte maturation is underpinned by IP3R1 phosphorylation at an MPM-2 epitope(s). 相似文献
9.
Calcium release via intracellular Ca2+ release channels is a central event underpinning the generation of numerous, often divergent physiological processes. In electrically non-excitable cells, this Ca2+ release is brought about primarily through activation of inositol 1,4,5-trisphosphate receptors and typically takes the form of calcium oscillations. It is widely believed that information is carried in the temporal and spatial characteristics of these signals. Furthermore, stimulation of individual cells with different agonists can generate Ca2+ oscillations with dramatically different spatial and temporal characteristics. Thus, mechanisms must exist for the acute regulation of Ca2+ release such that agonist-specific Ca2+ signals can be generated. One such mechanism by which Ca2+ signals can be modulated is through simultaneous activation of multiple second messenger pathways. For example, activation of both the InsP3 and cAMP pathways leads to the modulation of Ca2+ release through protein kinase A mediated phosphoregulation of the InsP3R. Indeed, each InsP3R subtype is a potential substrate for PKA, although the functional consequences of this phosphorylation are not clear. This review will focus on recent advances in our understanding of phosphoregulation of InsP3R, as well as the functional consequences of this modulation in terms of eliciting specific cellular events. 相似文献
10.
A function for tyrosine phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in lymphocyte activation 总被引:1,自引:0,他引:1
下载免费PDF全文

Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation. 相似文献
11.
Bai GR Yang LH Huang XY Sun FZ 《Biochemical and biophysical research communications》2006,348(4):1319-1327
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels. 相似文献
12.
Identification in extracts from AR4-2J cells of inositol 1,4,5-trisphosphate by its susceptibility to inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase.
下载免费PDF全文

Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa. 相似文献
13.
Thrower EC Park HY So SH Yoo SH Ehrlich BE 《The Journal of biological chemistry》2002,277(18):15801-15806
Secretory granules of neuroendocrine cells are inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) stores in which the Ca(2+) storage protein, chromogranin A (CGA), couples with InsP(3)-gated Ca(2+) channels (InsP(3)R) located in the granule membrane. The functional aspect of this coupling has been investigated via release studies and planar lipid bilayer experiments in the presence and absence of CGA. CGA drastically increased the release activity of the InsP(3)R by increasing the channel open probability by 9-fold and the mean open time by 12-fold. Our results show that CGA-coupled InsP(3)Rs are more sensitive to activation than uncoupled receptors. This modulation of InsP(3)R channel activity by CGA appears to be an essential component in the control of intracellular Ca(2+) concentration by secretory granules and may regulate the rate of vesicle fusion and exocytosis. 相似文献
14.
15.
Inositol 1,4,5-trisphosphate receptors (InsP3R) are the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca2+-dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca2+ signals. In this study, regulation of Ca2+ release by phosphorylation of type-1 InsP3R (InsP3R-1) by cAMP (PKA)- and cGMP (PKG)-dependent protein kinases was investigated in the two major splice variants of InsP3R-1. InsP3R-1 was expressed in DT-40 cells devoid of endogenous InsP3R. In cells expressing the neuronal, S2+ splice variant of the InsP3R-1, Ca2+ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca2+ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that Ser-1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP3R-1. Activation of PKA also resulted in potentiated Ca2+ release in cells expressing the non-neuronal, S2- splice variant of the InsP3R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP3R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca2+ release in cells expressing the S2- variant of InsP3R-1. Collectively, these data indicate that phosphoregulation of InsP3R-1 has dramatic effects on Ca2+ release and defines the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues. 相似文献
16.
Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A
Inositol 1,4,5-trisphosphate receptors (InsP(3)R) play a key role in intracellular calcium (Ca(2+)) signaling. Three InsP(3)R isoforms are expressed in mammals. Type 1 InsP(3)R (InsP(3)R1) is a predominant neuronal isoform. Neuronal InsP(3)R1 is one of the major substrates of protein kinase A (PKA) phosphorylation. In our previous study (Tang, T. S., Tu, H., Wang, Z., and Bezprozvanny, I. (2003) J. Neurosci. 23, 403-415) we discovered a direct association between InsP(3)R1 and protein phosphatase 1 alpha (PP1 alpha). In functional experiments we demonstrated that phosphorylation by PKA activates InsP(3)R1 and that dephosphorylation by PP1 alpha inhibits InsP(3)R1. To extend these findings, here we investigated the possibility of InsP(3)R1-PKA association. In a series of biochemical experiments we demonstrate the following findings. 1) InsP(3)R1 and PKA associate in the brain. 2) InsP(3)R1-PKA association is mediated by the AKAP9 (Yotiao) multi-functional PKA anchoring protein. 3) InsP(3)R1-AKAP9 association is mediated via the leucine/isoleucine zipper (LIZ) motif in the InsP(3)R1 coupling domain and the fourth LIZ motif in AKAP9. 4) The InsP(3)R association with AKAP9 is specific for type 1 InsP(3)R. 5) Both the SII(+) and the SII(-) coupling domain splice variants of InsP(3)R1 bind to AKAP9. 6) Binding to AKAP9 promotes association of neuronal InsP(3)R1 with the NR1 NMDA receptor; and 7) neuronal InsP(3)R1 associate with PP1 directly via carboxy-terminus and indirectly via AKAP9. The obtained results advance our understanding of cross-talk between cAMP and InsP(3)/Ca(2+) signaling pathways in the brain. 相似文献
17.
Bare DJ Kettlun CS Liang M Bers DM Mignery GA 《The Journal of biological chemistry》2005,280(16):15912-15920
The type 2 inositol 1,4,5-trisphosphate receptor (InsP(3)R2) was identified previously as the predominant isoform in cardiac ventricular myocytes. Here we reported the subcellular localization of InsP(3)R2 to the cardiomyocyte nuclear envelope (NE). The other major known endo/sarcoplasmic reticulum calcium-release channel (ryanodine receptor) was not localized to the NE, indicating functional segregation of these channels and possibly a unique role for InsP(3)R2 in regulating nuclear calcium dynamics. Immunoprecipitation experiments revealed that the NE InsP(3)R2 associates with Ca(2+)/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta), the major isoform expressed in cardiac myocytes. Recombinant InsP(3)R2 and CaMKIIdelta(B) also co-immunoprecipitated after co-expression in COS-1 cells. Additionally, the amino-terminal 1078 amino acids of the InsP(3)R2 were sufficient for interaction with CaMKIIdelta(B) and associated upon mixing following separate expression. CaMKII can also phosphorylate InsP(3)R2, as demonstrated by (32)P labeling. Incorporation of CaMKII-treated InsP(3)R2 into planar lipid bilayers revealed that InsP(3)-mediated channel open probability is significantly reduced ( approximately 11 times) by phosphorylation via CaMKII. We concluded that the InsP(3)R2 and CaMKIIdelta likely represent two central components of a multiprotein signaling complex, and this raises the possibility that calcium release via InsP(3)R2 in the myocyte NE may activate local CaMKII signaling, which may feedback on InsP(3)R2 function. 相似文献
18.
Bertsch U Deschermeier C Fanick W Girkontaite I Hillemeier K Johnen H Weglöhner W Emmrich F Mayr GW 《The Journal of biological chemistry》2000,275(3):1557-1564
A segment of inositol 1,4,5-trisphosphate 3-kinase responsible for inositol 1,4,5-trisphosphate (InsP(3)) binding was characterized and confirmed by three different approaches employing the fully active expressed catalytic domain of the enzyme. Part of this moiety was protected from limited tryptic proteolysis by InsP(3). Sequencing of two fragments of 16 and 21 kDa, generated in the absence or presence of InsP(3), respectively, identified segment Glu-271 to Arg-305 as being protected. 15 monoclonal antibodies, all binding to epitopes within this region, inhibited enzyme activity and interfered with inositol phosphate binding. Detailed enzyme kinetic parameters of 32 site-directed mutants revealed residues Arg-276 and Lys-303 in this segment and Arg-322, located nearby, as directly involved in and five other closely neighbored residues, all located within a segment of 73 amino acids, as also influencing InsP(3) binding. Part of this region is similar in sequence to an InsP(3) binding segment in InsP(3) receptors. Combined with the finding that mutants influencing only ATP binding all lie outside this region, these data indicate that an InsP(3) binding core domain is inserted between two segments acting together in ATP binding and phosphate transfer. 相似文献
19.
Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. 总被引:13,自引:4,他引:13
下载免费PDF全文

Inositol 1,4,5-trisphosphate (InsP3) is a component of the phosphoinositide second-messenger system which mobilizes Ca2+ from intracellular stores. Recently, an InsP3 receptor binding protein from rat cerebellar membranes was solubilized and purified to homogeneity. The potent inhibition by Ca2+ of [3H]InsP3 binding to the InsP3 receptor in cellular membranes is not apparent in the purified receptor. The Ca2+-dependent inhibition of [3H]InsP3 binding in the crude homogenate (concn. giving 50% inhibition = 300 nM) can be restored by addition of solubilized cerebellar membranes to the purified receptor. In the present study, we further characterize the protein in solubilized membranes which confers Ca2+-sensitivity to the receptor, and which we term 'calmedin'. Calmedin appears to be a neutral membrane protein with an estimated Mr of 300,000 by gel filtration in the presence of Triton X-100. Calmedin confers a Ca2+-sensitivity to InsP3 receptor binding, which can be completely reversed by 10 min incubation with EDTA and therefore does not represent Ca2+-dependent proteinase action. Calmedin effects on the purified InsP3 receptor depend on Ca2+ binding to the calmedin, although Ca2+ also binds directly to the InsP3 receptor. The regional distribution of calmedin differs from that of the InsP3 receptor in the brain, suggesting that it also mediates other Ca2+-dependent functions. Calmedin activity in peripheral tissues is much lower than in brain. 相似文献
20.
Binding of inositol 1,4,5-trisphosphate (IP(3)) to the amino-terminal region of IP(3) receptor promotes Ca(2+) release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP(3) binding core domain play a key role in IP(3) binding suppression and regulatory protein interaction. Here we present a crystal structure of the suppressor domain of the mouse type 1 IP(3) receptor at 1.8 A. Displaying a shape akin to a hammer, the suppressor region contains a Head subdomain forming the beta-trefoil fold and an Arm subdomain possessing a helix-turn-helix structure. The conserved region on the Head subdomain appeared to interact with the IP(3) binding core domain and is in close proximity to the previously proposed binding sites of Homer, RACK1, calmodulin, and CaBP1. The present study sheds light onto the mechanism underlying the receptor's sensitivity to the ligand and its communication with cellular signaling proteins. 相似文献