首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)R) has important consequences for defining the particular spatio-temporal properties of intracellular Ca(2+) signals. In this study, regulation of Ca(2+) release by phosphorylation of type 1 InsP(3)R (InsP(3)R-1) was investigated by constructing "phosphomimetic" charge mutations in the functionally important phosphorylation sites of both the S2+ and S2- InsP(3)R-1 splice variants. Ca(2+) release was investigated following expression in Dt-40 3ko cells devoid of endogenous InsP(3)R. In cells expressing either the S1755E S2+ or S1589E/S1755E S2- InsP(3)R-1, InsP(3)-induced Ca(2+) release was markedly enhanced compared with nonphosphorylatable S2+ S1755A and S2- S1589A/S1755A mutants. Ca(2+) release through the S2- S1589E/S1755E InsP(3)R-1 was enhanced approximately 8-fold over wild type and approximately 50-fold when compared with the nonphosphorylatable S2- S1589A/S1755A mutant. In cells expressing S2- InsP(3)R-1 with single mutations in either S1589E or S1755E, the sensitivity of Ca(2+) release was enhanced approximately 3-fold; sensitivity was midway between the wild type and the double glutamate mutation. Paradoxically, forskolin treatment of cells expressing either single Ser/Glu mutation failed to further enhance Ca(2+) release. The sensitivity of Ca(2+) release in cells expressing S2+ S1755E InsP(3)R-1 was comparable with the sensitivity of S2- S1589E/S1755E InsP(3)R-1. In contrast, mutation of S2+ S1589E InsP(3)R-1 resulted in a receptor with comparable sensitivity to wild type cells. Expression of S2- S1589E/S1755E InsP(3)R-1 resulted in robust Ca(2+) oscillations when cells were stimulated with concentrations of alpha-IgM antibody that were threshold for stimulation in S2- wild type InsP(3)R-1-expressing cells. However, at higher concentrations of alpha-IgM antibody, Ca(2+) oscillations of a similar period and magnitude were initiated in cells expressing either wild type or S2- phosphomimetic mutations. Thus, regulation by phosphorylation of the functional sensitivity of InsP(3)R-1 appears to define the threshold at which oscillations are initiated but not the frequency or amplitude of the signal when established.  相似文献   

2.
ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.  相似文献   

3.
Inositol 1,4,5-trisphosphate receptors (InsP3R) are the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca2+-dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca2+ signals. In this study, regulation of Ca2+ release by phosphorylation of type-1 InsP3R (InsP3R-1) by cAMP (PKA)- and cGMP (PKG)-dependent protein kinases was investigated in the two major splice variants of InsP3R-1. InsP3R-1 was expressed in DT-40 cells devoid of endogenous InsP3R. In cells expressing the neuronal, S2+ splice variant of the InsP3R-1, Ca2+ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca2+ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that Ser-1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP3R-1. Activation of PKA also resulted in potentiated Ca2+ release in cells expressing the non-neuronal, S2- splice variant of the InsP3R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP3R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca2+ release in cells expressing the S2- variant of InsP3R-1. Collectively, these data indicate that phosphoregulation of InsP3R-1 has dramatic effects on Ca2+ release and defines the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.  相似文献   

4.
Carbamoyl phosphate synthethase I synthesizes carbamoyl phosphate from ammonia, HCO3- and two molecules of ATP, one of which, ATPA, yields Pi while the other, ATPB, yields the phosphoryl group of carbamoyl phosphate. Pulse-chase experiments with [gamma-32P]ATP without added HCO3- demonstrate separate binding sites for ATPA and ATPB. Bound ATPA dissociates readily from its site (t1/2 approximately 1--2 s) and the Kd is 0.2--0.7 mM. For the ATPB binding site the t1/2 for dissociation is 5--12 s and the Kd approximately 10 mM. Kd for ATPA seems to increase with enzyme concentration whereas Kd for ATPB does not change. HClO4 releases the ATP unchanged from the enzyme . ATPB and enzyme . ATPB . ATPA complexes. In the presence of HCO3-, ATP and N-acetylglutamate, an enzyme . ATPB . HCO3- . ATPA complex is formed. Its formation by the addition of HCO3- to the enzyme . ATPB . ATPA complex appears to involve an initial bimolecular addition reaction followed by an isomerization. Treatment with HClO4 releases Pi from ATPA but ATPB is released unchanged. Spontaneous hydrolysis of ATPA is responsible for the ATPase activity of the enzyme. Thus, a covalent bond may form between HCO3- and ATPA. However, ATPA can dissociate rapidly (t1/2 less than 10 s). The Kd for ATPA is approximately 0.2 mM. ATPB appears unable to dissociate from the enzyme . ATPB . HCO3- . ATPA complex since the t1/2 for dissociation of ATPB from the enzyme is lengthened about five times in the presence of 19 mM HCO3- and at 1 mM ATP. ATPA may also hydrolyse in this complex and be replaced by another molecule of ATP in the absence of exchange of ATPB. However, the ATPA binding site must be occupied to prevent ATPB release. ATPB may be bound in a pocket which becomes inaccessible to the solution when HCO3- and ATPA also bind. In contrast, HCO3- does not inhibit the binding of ATPB to the enzyme. Various intermediate steps in the formation of the enzyme . ATPb . HCO3- . ATPA complex are discussed. Additional evidence is presented that the ATPB binding site is only periodically accessible to ATP in solution and that ATPB in the steady-state reaction binds when the products leave. Since greater than 1.3 mol ATPB and greater than 1.8 mol ATPA bind/mol enzyme dimer, the enzyme monomer may be an active species.  相似文献   

5.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.  相似文献   

6.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

7.
ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.Inositol 1,4,5-trisphosphate receptors (InsP3R)3 are a family of large, tetrameric, InsP3-gated cation channels. The three members of this family (InsP3R1, InsP3R2, and InsP3R3) are nearly ubiquitously expressed and are localized primarily to the endoplasmic reticulum (ER) membrane (13). Numerous hormones, neurotransmitters, and growth factors bind to receptors that stimulate phospholipase C-induced InsP3 production (4). InsP3 subsequently binds to the InsP3R and induces channel opening. This pathway represents a major mechanism for Ca2+ liberation from ER stores (5). All three InsP3R isoforms are dynamically regulated by cytosolic factors in addition to InsP3 (1). Ca2+ is perhaps the most important determinant of InsP3R activity besides InsP3 itself and is known to regulate InsP3R both positively and negatively (6). ATP, in concert with InsP3 and Ca2+, also regulates InsP3R as do numerous kinases, phosphatases, and protein-binding partners (710). This intricate network of regulation allows InsP3R activity to be finely tuned by the local cytosolic environment (9). As a result, InsP3-induced Ca2+ signals can exhibit a wide variety of spatial and temporal patterns, which likely allows Ca2+ to control many diverse cellular processes.Modulation of InsP3-induced Ca2+ release (IICR) by ATP and other nucleotides provides a direct link between intracellular Ca2+ signaling and the metabolic state of the cell. Metabolic fluctuations could, therefore, impact Ca2+ signaling in many cell types given that InsP3R are expressed in all cells (11, 12). Consistent with this, ATP has been shown to augment IICR in many diverse cell types including primary neurons (13), smooth muscle cells (14), and exocrine acinar cells (15) as well as in immortalized cell lines (1618). The effects of ATP on InsP3R function do not require hydrolysis because non-hydrolyzable ATP analogues are as effective as ATP (7, 14). ATP is thought to bind to distinct regions in the central, coupling domain of the receptors and to facilitate channel opening (2, 19). ATP is not required for channel gating, but instead, increases InsP3R activity in an allosteric fashion by increasing the open probability of the channel in the presence of activating concentrations of InsP3 and Ca2+ (7, 8, 20).Despite a wealth of knowledge regarding the functional effects of ATP on InsP3R function, there is relatively little known about the molecular determinants of these actions. ATP is thought to exert effects on channel function by direct binding to glycine-rich regions containing the consensus sequence GXGXXG that are present in the receptors (2). These sequences were first proposed to be ATP-binding domains due to their similarity with Walker A motifs (21). The neuronal S2+ splice variant of InsP3R1 contains two such domains termed ATPA and ATPB. A third site, ATPC, is formed upon removal of the S2 splice site (2, 22). The ATPB site is conserved in InsP3R2 and InsP3R3, while the ATPA and ATPC sites are unique to InsP3R1. Our prior work examining the functional consequences of mutating these ATP-binding sites has yielded unexpected results. For example, mutating the ATPB site in InsP3R2 completely eliminated the enhancing effects of ATP on this isoform while mutating the analogous site in InsP3R3 failed to alter the effects of ATP (23). This indicated the presence of an additional locus for ATP modulation of InsP3R3. In addition, mutation of the ATPC in the S2 splice variant of InsP3R1 did not alter the ability of ATP to modulate Ca2+ release, but instead impaired the ability of protein kinase A to phosphorylate Ser-1755 of this isoform (22).The ATPA and ATPB sites in InsP3R1 were first identified as putative nucleotide-binding domains after the cloning of the full-length receptor (24). Early binding experiments with 8-azido-[α-32P]ATP established that ATP cross-linked with receptor purified from rat cerebellum at one site per receptor monomer (19). Later, more detailed, binding experiments on trypsinized recombinant rat InsP3R1 showed cross-linking of ATP to two distinct regions of the receptor that corresponded with the ATPA and ATPB sites (17). We and others (16, 22, 23) have also reported the binding of ATP analogues to purified GST fusions of small regions of InsP3R1 surrounding the ATPA and ATPB sites. It is widely accepted, in the context of the sequence similarity to Walker A motifs and biochemical data, that the ATPA and ATPB sites are the loci where ATP exerts its positive functional effects on InsP3R1 function (13, 16). Furthermore, the higher affinity of the ATPA site to ATP is thought to confer the higher sensitivity of InsP3R1 to ATP versus InsP3R3, which contains the ATPB site exclusively (25, 26). The purpose of this study, therefore, was to examine the contributions of the ATPA and ATPB sites to ATP modulation of the S2+ splice variant of InsP3R1. We compared the effects of ATP on InsP3R1 and on ATP-binding site mutated InsP3R1 using detailed functional analyses in permeabilized cells and in single channel recordings. Here we report that InsP3R1 is similar to InsP3R3 in that ATP modulates IICR even at maximal InsP3 concentrations and that neither the ATPA nor the ATPB site is required for this effect.  相似文献   

8.
Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ~8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ~500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.  相似文献   

9.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

10.
Calcium release through inositol (1,4,5)-trisphosphate receptors (InsP(3)R) is the primary signal driving digestive enzyme and fluid secretion from pancreatic acinar cells. The type 2 (InsP(3)R2) and type 3 (InsP(3)R3) InsP(3)R are the predominant isoforms expressed in acinar cells and are required for proper exocrine gland function. Both InsP(3)R2 and InsP(3)R3 are positively regulated by cytosolic ATP, but InsP(3)R2 is 10-fold more sensitive than InsP(3)R3 to this form of modulation. In this study, we examined the role of InsP(3)R2 in setting the sensitivity of InsP(3)-induced Ca(2+) release (IICR) to ATP in pancreatic acinar cells. IICR was measured in permeabilized acinar cells from wild-type (WT) and InsP(3)R2 knock-out (KO) mice. ATP augmented IICR from WT pancreatic cells with an EC(50) of 38 mum. However, the EC(50) was 10-fold higher in acinar cells isolated from InsP(3)R2-KO mice, indicating a role for InsP(3)R2 in setting the sensitivity of IICR to ATP. Consistent with this idea, heterologous expression of InsP(3)R2 in RinM5F cells, which natively express predominately InsP(3)R3, increased the sensitivity of IICR to ATP. Depletion of ATP attenuated agonist-induced Ca(2+) signaling in WT pancreatic acinar cells. This effect was more profound in acinar cells prepared from InsP(3)R2-KO mice. These data suggest that the sensitivity of IICR to ATP depletion is regulated by the particular complement of InsP(3)R expressed in an individual cell. The effects of metabolic stress on intracellular Ca(2+) signals can therefore be determined by the relative amount of InsP(3)R2 expressed in cells.  相似文献   

11.
In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the single channel properties of the recombinant receptors were defined. The unitary conductance of the two splice variants were approximately 290 pS with Cs+ as charge carrier and approximately 65 pS with Ca2+ as charge carrier. Both InsP3R expression products consistently behaved like those of the native type-1 receptor isoform isolated from cerebellum in terms of their InsP3, Ca2+, and heparin sensitivity. An InsP3 receptor ligand binding domain truncation lacking the 310 amino-terminal amino acids (pInsP3R-DeltaT1ALT) formed tetrameric complexes but failed to bind InsP3 with high affinity, and did not form functional Ca2+ channels when reconstituted in lipid bilayers. These data suggest that 1) the ligand binding alternative splice site is functionally inert in terms of InsP3 binding and single channel function, and 2) the single channel properties of the expressed recombinant type-1 channel are essentially identical to those of the native channel. This work establishes a foundation from which molecular/biophysical approaches can be used to define the structure-function properties of the InsP3 receptor channel family.  相似文献   

12.
Rat liver carbamoyl-phosphate synthetase I is shown to have synthetase and ATPase activity in the absence of acetylglutamate. Km values for ATP, Mg2+ and K+ are greatly increased, the Km for HCO-3 is not changed much, and the Km for NH+4 is markedly reduced. Vmax for the synthetase reaction is less than 20% of that of the acetylglutamate-activated enzyme whereas Vmax for the ATPase activity is greater than 40% of that with acetylglutamate. Pulse-chase experiments with H14CO-3 show formation of less "active CO2" (the central intermediate) than with acetylglutamate; ATPase activity is reduced in proportion, but the synthetase activity is much smaller. Binding of one ATP molecule with high affinity (Kd = 20-30 microM) is shown in the absence of acetylglutamate. This appears to be the molecule of ATPB (ATPB provides the phosphoryl group of carbamoyl phosphate). In contrast, the affinity for ATPA (ATPA yields Pi) is much reduced. Initial velocity measurements without acetylglutamate show a time lag before reaching a constant velocity. At 50 microM acetylglutamate the lag is much longer, but at 10 mM acetylglutamate it is shorter. Activation by acetylglutamate requires ATP at concentrations sufficient to occupy the ATPA and the ATPB binding sites. Preincubation with 10 mM acetylglutamate alone shortens the activation time. From these findings we propose an allosteric model for activation of carbamoyl-phosphate synthetase in which there are two active states, R and R . AcGlu. Binding of ATPA is associated with the conversion of T to R. R . AcGlu differs from R in that transfer to carbamate of the gamma-phosphoryl group of ATPB appears to be facilitated.  相似文献   

13.
Store-operated channels (SOCs) provide an important means for mediating longer-term Ca(2+) signals and replenishment of Ca(2+) stores in a multitude of cell types. However, the coupling mechanism between endoplasmic reticulum stores to activate plasma membrane SOCs remains unknown. In DT40 chicken B lymphocytes, the permeant inositol trisphosphate receptor (InsP(3)R) modifier, 2-aminoethoxydiphenyl borate (2-APB), was a powerful activator of store-operated Ca(2+) entry between 1-10 microm. 2-APB activated authentic SOCs because the entry was totally selective for Ca(2+) (no detectable entry of Ba(2+) or Sr(2+) ions), and highly sensitive to La(3+) ions (IC(50) 30-100 nm). To assess the role of InsP(3)Rs in this response, we used the DT40 triple InsP(3)R-knockout (ko) cell line, DT40InsP(3)R-ko, in which the absence of full-length InsP(3)Rs or InsP(3)R fragments was verified by Western analysis using antibodies cross-reacting with N-terminal epitopes of all three chicken InsP(3)R subtypes. The 2-APB-induced activation of SOCs was identical in the DT40InsP(3)R-ko, cells indicating InsP(3)Rs were not involved. With both wild type (wt) and ko DT40 cells, 2-APB had no effect on Ca(2+) entry in store-replete cells, indicating that its action was restricted to SOCs in a store-coupled state. 2-APB induced a robust activation of Ca(2+) release from stores in intact DT40wt cells but not in DT40InsP(3)R-ko cells, indicating an InsP(3)R-mediated effect. In contrast, 2-APB blocked InsP(3)Rs in permeabilized DT40wt cells, suggesting that the stimulatory action of 2-APB was restricted to functionally coupled InsP(3)Rs in intact cells. Uncoupling of ER/PM interactions in intact cells by calyculin A-induced cytoskeletal rearrangement prevented SOC activation by store-emptying and 2-APB; this treatment completely prevented 2-APB-induced InsP(3)R activation but did not alter InsP(3)R activation mediated by phospholipase C-coupled receptor stimulation. The results indicate that the robust bifunctional actions of 2-APB on both SOCs and InsP(3)Rs are dependent on the coupled state of these channels and suggest that 2-APB may target the coupling machinery involved in mediating store-operated Ca(2+) entry.  相似文献   

14.
In the accompanying article, we compared main functional properties of the three mammalian inositol 1,4,5-trisphosphate receptors (InsP3R) isoforms. In this article we focused on modulation of mammalian InsP3R isoforms by cytosolic Ca2+. We found that: 1), when recorded in the presence of 2 microM InsP3 and 0.5 mM ATP all three mammalian InsP3R isoforms display bell-shaped Ca2+ dependence in physiological range of Ca2+ concentrations (pCa 8-5); 2), in the same experimental conditions InsP3R3 is most sensitive to modulation by Ca2+ (peak at 107 nM Ca2+), followed by InsP3R2 (peak at 154 nM Ca2+), and then by InsP3R1 (peak at 257 nM Ca2+); 3), increase in ATP concentration to 5 mM had no significant effect of Ca2+ dependence of InsP3R1 and InsP3R2; 4), increase in ATP concentration to 5 mM converted Ca2+ dependence of InsP3R3 from "narrow" shape to "square" shape; 5), ATP-induced change in the shape of InsP3R3 Ca2+ dependence was mainly due to an >200-fold reduction in the apparent affinity of the Ca2+-inhibitory site; 6), the apparent Ca2+ affinity of the Ca2+ sensor region (Cas) determined in biochemical experiments is equal to 0.23 microM Ca2+ for RT1-Cas, 0.16 microM Ca2+ for RT2-Cas, and 0.10 microM Ca2+ for RT3-Cas; and 7), Ca2+ sensitivity of InsP3R1 and InsP3R3 isoforms recorded in the presence of 2 microM InsP3 and 0.5 mM ATP or 2 microM InsP3 and 5 mM ATP can be exchanged by swapping their Cas regions. Obtained results provide novel information about functional properties of mammalian InsP3R isoforms and support the importance of the Ca2+ sensor region (Cas) in determining the sensitivity of InsP3R isoforms to modulation by Ca2+.  相似文献   

15.
The inositol (1,4,5)-trisphosphate receptor (InsP(3)R) is an intracellular calcium (Ca(2+)) release channel that plays a crucial role in cell signaling. In Drosophila melanogaster a single InsP(3)R gene (itpr) encodes a protein (DmInsP(3)R) that is approximately 60% conserved with mammalian InsP(3)Rs. A number of itpr mutant alleles have been identified in genetic screens and studied for their effect on development and physiology. However, the functional properties of wild-type or mutant DmInsP(3)Rs have never been described. Here we use the planar lipid bilayer reconstitution technique to describe single-channel properties of embryonic and adult head DmInsP(3)R splice variants. The three mutants chosen in this study reside in each of the three structural domains of the DmInsP(3)R-the amino-terminal ligand binding domain (ug3), the middle-coupling domain (wc703), and the channel-forming region (ka901). We discovered that 1), the major functional properties of DmInsP(3)R (conductance, gating, and sensitivity to InsP(3) and Ca(2+)) are remarkably conserved with the mammalian InsP(3)R1; 2), single-channel conductance of the adult head DmInsP(3)R isoform is 89 pS and the embryonic DmInsP(3)R isoform is 70 pS; 3), ug3 mutation affects sensitivity of the DmInsP(3)Rs to activation by InsP(3), but not their InsP(3)-binding properties; 4), wc703 channels have increased sensitivity to modulation by Ca(2+); and 5), homomeric ka901 channels are not functional. We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP(3)-induced Ca(2+) fluxes in microsomes isolated from wild-type and heterozygous itpr mutants. Our study validates the use of D. melanogaster as an appropriate model for InsP(3)R structure-function studies and provides novel insights into the fundamental mechanisms of the InsP(3)R function.  相似文献   

16.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP(3)R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP(3)R activated by either AdA or InsP(3) have identical channel conductance properties. Furthermore, AdA, like InsP(3), activates the channel by tuning Ca(2+) inhibition of gating. However, gating of the AdA-liganded InsP(3)R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP(3)-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP(3) in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP(3)R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP(3) in the presence or absence of ATP. Also, the higher functional affinity of InsP(3)R for AdA than for InsP(3) is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP(3)R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca(2+) release events in cells. Comparisons of single-channel gating kinetics of the InsP(3)R activated by InsP(3), AdA, and its analogues also identify molecular elements in InsP(3)R ligands that contribute to binding and activation of channel gating.  相似文献   

17.
This paper demonstrates, by pulse-chase techniques, the binding to rat liver mitochondrial carbamoyl phosphate synthetase of the ATP molecule (ATPB) which transfers its gamma-phosphoryl group to carbamoyl phosphate. This bound APTB can react with NH3, HCO-3 and ATP (see below) to produce carbamoyl phosphate before it exchanges with free ATP. Mg2+ and N-acetylglutamate, but not NH3 or HCO-3, are required for this binding; the amount bound depends on the concentration of ATP (Kapp = 10--30 microns ATP) and the amount of enzyme. At saturation at least one ATPB molecule binds per enzyme dimer. Binding of ATPB follows a slow exponential time course (t1/2 8--16 s, 22 degrees C), independent of ATP concentration and little affected by NH3, NCO-3 or by incubation of the enzyme with unlabelled ATP prior to the pulse of [gamma-32P]ATP. Formation of carbamoyl phosphate from traces of NH3 and HCO-3 when the enzyme is incubated with ATP follows the kinetics expected if it were generated from the bound ATPB, indicating that the latter is a precursor of carbamoyl phosphate ('Cbm-P precursor') in the normal enzyme reaction. This indicates that the site for ATPB is usually inaccessible to ATP in solution but becomes accessible when the enzyme undergoes a periodical conformational change. Bound ATP becomes Cbm-P precursor when the enzyme reverts to the inaccessible conformation. Pulse-chase experiments in the absence of NH3 and HCO-3 (less than 0.2 mM) also demonstrate binding of ATPA (the molecule which yields Pi in the normal enzyme reaction), as shown by a 'burst' in 32Pi production. Therefore, (in accordance with our previous findings) both ATPA and ATPB can bind simultaneously to the enzyme and react with NH3 and HCO-3 in the chase solution before they can exchange with free ATP. However, at low ATP concentration (18 micron) in the pulse incubation, only ATPB binds since ATP is required in the chase (see above). Despite the presence of two ATP binding sites, the bifunctional inhibitor adenosine(5')pentaphospho(5')adenosine(Ap5A) fails to inhibit the enzyme significantly. A more detailed modification of the scheme previously published [Rubio, V. & Grisolia, S. (1977) Biochemistry, 16, 321--329] is proposed; it is suggested that ATPB gains access to the active centre when the products leave the enzyme and the active centre is in an accessible configuration. The transformation from accessible to inaccessible configuration appears to be part of the normal enzyme reaction and may represent to conformational change postulated by others from steady-state kinetics. The properties of the intermediates also indicate that hydrolysis of ATPA must be largely responsible for the HCO-3-dependent ATPase activity of the enzyme. The lack of inhibition of the enzyme by Ap5A indicates substantial differences between the Escherichia coli and the rat liver synthetase.  相似文献   

18.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

19.
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) plays a critical role in Ca2+ signaling in cells. Neuronal and nonneuronal isoforms of the InsP3R1 differ by alternative splicing in the coupling domain of the InsP3R1 (SII site). Deletion of 107 amino acids from the coupling domain of the InsP3R1 results in epileptic-like behaviors in opisthotonos (opt) spontaneous mouse mutant. Using Spodoptera frugiperda cells expression system, we compared single-channel behavior of recombinant InsP3R1-SII(+), InsP3R1-SII(-), and InsP3R1-opt channels in planar lipid bilayers. The main results of our study are: 1) the InsP3R1-SII(-) has a higher conductance (94 pS) and the InsP3R1-opt has a lower conductance (64 pS) than the InsP3R1-SII(+) (81 pS); 2) the bell-shaped Ca2+-dependence peaks at 200-300 nM Ca2+ for all three InsP3R1 isoforms; 3) the bell-shaped Ca2+-dependence is wider for the InsP3R1-SII(+) and narrower for the InsP3R1-SII(-) and InsP3R1-opt; 4) the apparent affinity for ATP is sixfold lower for the InsP3R1-SII(-) (1.4 mM) and 20-fold lower for the InsP3R1-opt (5.3 mM) than for the InsP3R1-SII(+) (0.24 mM); 5) the InsP3R1-SII(-) is approximately twofold more active than the InsP3R1-SII(+) in the absence of ATP. Obtained results provide novel information about the molecular determinants of the InsP3R1 function.  相似文献   

20.
Quantitative, time-resolved measurements have been made of intracellular Ca ion release by inositol 1,4,5-trisphosphate (InsP3) and extracellular ATP in porcine aortic endothelial cells in tissue culture. Intracellular free [Ca] was detected with the calcium dye fluo-3 and InsP3 released intracellularly by photolysis of 'caged' InsP3 in whole-cell voltage-clamped aortic endothelial cells. A rise of [Ca] was recorded at InsP3 concentrations greater than 0.2 microM. The timecourse at low InsP3 concentrations comprised a delay of mean 300 ms (range 266-330 ms), a peak in 2-3 s before declining with a half-time of 5-10 s. The delay and time-to-peak decreased with increasing concentrations of InsP3 over the range 0.2-5 microM. At very high concentrations of InsP3 (> 5 microM), the delay in the Ca response was short, always less than 20 ms. The results are consistent with a direct binding and gating action of InsP3 on the Ca channel of the cellular store. Following InsP3 action there is a refractoriness of the InsP3 Ca release process which recovers with a timecourse of half-time about 30 s. A comparison can be made between the timecourse of InsP3 and extracellular ATP actions. High concentrations of ATP (500 microM) acted with a delay of mean 1.8 s (range 1.2-2.5 s), whereas even moderate concentrations of InsP3 acted much more quickly, suggesting that there are slow coupling steps before or during the production of InsP3 in response to extracellular ATP. Both ATP and InsP3 evoked an increase in membrane conductance to K+, probably via Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号