首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway.  相似文献   

2.
Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins.  相似文献   

3.
4.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.  相似文献   

5.
Structure and assembly of beta-barrel membrane proteins.   总被引:5,自引:0,他引:5  
  相似文献   

6.
7.
Accurate protein structure prediction remains an active objective of research in bioinformatics. Membrane proteins comprise approximately 20% of most genomes. They are, however, poorly tractable targets of experimental structure determination. Their analysis using bioinformatics thus makes an important contribution to their on-going study. Using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we have addressed the alignment-free discrimination of membrane from non-membrane proteins. The method successfully identifies prokaryotic and eukaryotic alpha-helical membrane proteins at 94.4% accuracy, beta-barrel proteins at 72.4% accuracy, and distinguishes assorted non-membranous proteins with 85.9% accuracy. The method here is an important potential advance in the computational analysis of membrane protein structure. It represents a useful tool for the characterisation of membrane proteins with a wide variety of potential applications.  相似文献   

8.
9.
Summary The action of ethidium bromide and berenil on the mitochondrial genome of Saccharomyces cerevisiae has been compared in three types of study: (i) early kinetics (up to 4 h) of petite induction by the drugs in the presence or absence of sodium dodecyl sulphate; (ii) genetic consequences of long-term (8 cell generations) exposure to the drugs; (iii) inhibition of mitochondrial DNA replication, both in whole cells and in isolated mitochondria.The results have been interpreted as follows. Firstly, the early events in petite induction differ markedly for the two drugs, as indicated by differences in the short-term kinetics. After some stage a common pathway is apparently followed because the composition of the population of petite cells induced after long-term exposure are very similar for both ethidium bromide and berenil. Secondly, both drugs probably act at the same site to inhibit mitochondrial DNA replication, in view of the fact that a petite strain known to be resistant to ethidium bromide inhibition of mitochondrial DNA replication was found to have simultaneously acquired resistance to berenil. From consideration of the drug concentrations needed to inhibit mitochondrial DNA replication in vivo and in vitro it is suggested that in vivo permeability barriers impede the access of ethidium bromide to the site of inhibition of mitochondrial DNA replication, whilst access of berenil to this site is facilitated. The site at which the drugs act to inhibit mitochondrial DNA replication may be different from the site(s) involved in early petite induction. Binding of the drugs at the latter site(s) is considered to initiate a series of events leading to the fragmentation of yeast mitochondrial DNA and petite induction.  相似文献   

10.
Biogenesis of mitochondria   总被引:6,自引:0,他引:6  
  相似文献   

11.
Summary The proportion of total cell DNA which is mitochondrial DNA was measured in haploid, diploid and tetraploid strains of S. cerevisiae grown under a standard set of conditions. For all strains tested the mitochondrial DNA level was in the range 16%–25% of total cell DNA. Repeated measurements of the cellular level of mitochondrial DNA in two haploid strains showed that these strains have measurably different cellular mitochondrial DNA levels (17% and 24% of total DNA, respectively) under our conditions. These two grande strains were used to investigate the role of the mitochondrial and nuclear genomes in the regulation of the mitochondrial DNA level. We have shown by genetic analysis that the difference between these two strains is determined by at least two nuclear genes. The mitochondrial genome is not involved in the regulation of cellular mitochondrial DNA levels.A number of purified petite clones derived from independent spontaneous petite isolates of the grande strain which contained 24% mitochondrial DNA were also studied. The mitochondrial DNA levels in all but one of these petites fell in the range 20–25% of total cell DNA. From these results we conclude that, in general, the mitochondrial DNA level in petite strains is controlled by the same mechanism as operates in grande strains.We propose a general model for the control of the cellular mitochondrial DNA level, in which the amount of mitochondrial DNA per cell is determined by regulation of the number of mitochondrial DNA molecules per cell. This regulation is mediated through the availability of a set of nuclear coded components, possibly a mitochondrial membrane site, which are required for the replication of mitochondrial DNA.  相似文献   

12.
13.
14.
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.  相似文献   

15.
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

16.
We have analyzed the known three-dimensional structures of trimeric porins from bacterial outer membranes. The distribution of surface-exposed residues in a direction perpendicular to the membrane is similar to that in helical membrane proteins, with aliphatic residues concentrated in the central 20 A of the bilayer. Outside these residues is a layer of aromatic residues, followed by polar and charged residues. Residues in the trimer interface are more conserved than residues not in the interface. By comparing the interface and noninterface residues, an interface preference scale has been derived that may be used as a basis for predicting interface surfaces in monomer models.  相似文献   

17.
18.
19.
Summary The isolation and characterisation of a mutant affecting the assembly of mitochondrial ATPase is reported. The mutation confers resistance to oligomycin and venturicidin and sensitivity of growth on nonfermentable substrates to low temperature (19°). Genetic analysis indicates that the phenotype is due to a single mutation located on the mitochondrial DNA which is probably allelic with the independently isolated oligomycin resistance mutation [oli1-r].Growth of the mutant at the non-restrictive temperature (28°) yields mitochondria in which the ATPase appears more sensitive to oligomycin than that of the sensitive parental strain. However, when the enzyme is isolated free from the influence of the membrane strong resistance to oligomycin is evident. These data suggest that the component responsible for the oligomycin resistance of the ATPase is part of or subject to interaction with the mitochondrial inner membrane.Measurements of the ATPase content of mitochondria indicate that ATPase production is impaired during growth at 19° C. In addition, studies of the maximum inhibition of mitochondrial ATPase activity by high concentrations of oligomycin suggest a selective lesion in ATPase assembly at low temperature. The nett result is that during growth at 19° only about 10% of the normal level of ATPase is produced of which less than half is membrane integrated and thus capable of oxidative energy production.We propose that the mutation affects a mitochondrially synthesised membrane sector peptide of the ATPase which defines the interaction of F1 ATPase with specific environments on the mitochondrial inner membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号