共查询到20条相似文献,搜索用时 0 毫秒
1.
Beta-barrel membrane proteins occur in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The membrane-spanning sequences of beta-barrel membrane proteins are less hydrophobic than those of alpha-helical membrane proteins, which is probably the main reason why completely different folding and membrane assembly pathways have evolved for these two classes of membrane proteins. Some beta-barrel membrane proteins can be spontaneously refolded into lipid bilayer model membranes in vitro. They may also have this ability in vivo although lipid and protein chaperones likely assist with their assembly in appropriate target membranes. This review summarizes recent work on the thermodynamic stability and the mechanism of membrane insertion of beta-barrel membrane proteins in lipid model and biological membranes. How lipid compositions affect folding and assembly of beta-barrel membrane proteins is also reviewed. The stability of these proteins in membranes is not as large as previously thought (<10 kcal/mol) and is modulated by elastic forces of the lipid bilayer. Detailed kinetic studies indicate that beta-barrel membrane proteins fold in distinct steps with several intermediates that can be characterized in vitro. Formation of the barrel is synchronized with membrane insertion and all beta-hairpins insert simultaneously in a concerted pathway. 相似文献
2.
3.
Kutik S Stojanovski D Becker L Becker T Meinecke M Krüger V Prinz C Meisinger C Guiard B Wagner R Pfanner N Wiedemann N 《Cell》2008,132(6):1011-1024
Communication of mitochondria with the rest of the cell requires beta-barrel proteins of the outer membrane. All beta-barrel proteins are synthesized as precursors in the cytosol and imported into mitochondria by the general translocase TOM and the sorting machinery SAM. The SAM complex contains two proteins essential for cell viability, the channel-forming Sam50 and Sam35. We have identified the sorting signal of mitochondrial beta-barrel proteins that is universal in all eukaryotic kingdoms. The beta-signal initiates precursor insertion into a hydrophilic, proteinaceous membrane environment by forming a ternary complex with Sam35 and Sam50. Sam35 recognizes the beta-signal, inducing a major conductance increase of the Sam50 channel. Subsequent precursor release from SAM is coupled to integration into the lipid phase. We propose that a two-stage mechanism of signal-driven insertion into a membrane protein complex and subsequent integration into the lipid phase may represent a general mechanism for biogenesis of beta-barrel proteins. 相似文献
4.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes. 相似文献
5.
Structure and assembly of beta-barrel membrane proteins. 总被引:5,自引:0,他引:5
6.
7.
8.
9.
Ruth M. Hall Phillip Nagley Anthony W. Linnane 《Molecular & general genetics : MGG》1976,145(2):169-175
Summary The proportion of total cell DNA which is mitochondrial DNA was measured in haploid, diploid and tetraploid strains of S. cerevisiae grown under a standard set of conditions. For all strains tested the mitochondrial DNA level was in the range 16%–25% of total cell DNA. Repeated measurements of the cellular level of mitochondrial DNA in two haploid strains showed that these strains have measurably different cellular mitochondrial DNA levels (17% and 24% of total DNA, respectively) under our conditions. These two grande strains were used to investigate the role of the mitochondrial and nuclear genomes in the regulation of the mitochondrial DNA level. We have shown by genetic analysis that the difference between these two strains is determined by at least two nuclear genes. The mitochondrial genome is not involved in the regulation of cellular mitochondrial DNA levels.A number of purified petite clones derived from independent spontaneous petite isolates of the grande strain which contained 24% mitochondrial DNA were also studied. The mitochondrial DNA levels in all but one of these petites fell in the range 20–25% of total cell DNA. From these results we conclude that, in general, the mitochondrial DNA level in petite strains is controlled by the same mechanism as operates in grande strains.We propose a general model for the control of the cellular mitochondrial DNA level, in which the amount of mitochondrial DNA per cell is determined by regulation of the number of mitochondrial DNA molecules per cell. This regulation is mediated through the availability of a set of nuclear coded components, possibly a mitochondrial membrane site, which are required for the replication of mitochondrial DNA. 相似文献
10.
A predictor of membrane class: Discriminating alpha-helical and beta-barrel membrane proteins from non-membranous proteins
下载免费PDF全文

Accurate protein structure prediction remains an active objective of research in bioinformatics. Membrane proteins comprise approximately 20% of most genomes. They are, however, poorly tractable targets of experimental structure determination. Their analysis using bioinformatics thus makes an important contribution to their on-going study. Using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we have addressed the alignment-free discrimination of membrane from non-membrane proteins. The method successfully identifies prokaryotic and eukaryotic alpha-helical membrane proteins at 94.4% accuracy, beta-barrel proteins at 72.4% accuracy, and distinguishes assorted non-membranous proteins with 85.9% accuracy. The method here is an important potential advance in the computational analysis of membrane protein structure. It represents a useful tool for the characterisation of membrane proteins with a wide variety of potential applications. 相似文献
11.
Biogenesis of mitochondria 总被引:6,自引:0,他引:6
12.
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. 相似文献
13.
14.
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli. 相似文献
15.
16.
17.
18.
19.