首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).  相似文献   

2.
The activity of pyruvate dehydrogenase was assayed in extracts of rat hearts perfused in vitro with media containing glucose and insulin±acetate±dichloroacetate. Dichloroacetate (100μm, 1mm or 10mm) increased the activity of pyruvate dehydrogenase in perfusions with glucose or glucose+acetate. Evidence is given that dichloroacetate may facilitate the conversion of pyruvate dehydrogenase from an inactive (phosphorylated) form into an active (dephosphorylated) form.  相似文献   

3.
A UDP glucosyltransferase from Bacillus licheniformis was overexpressed, purified, and incubated with nucleotide diphosphate (NDP) d- and l-sugars to produce glucose, galactose, 2-deoxyglucose, viosamine, rhamnose, and fucose sugar-conjugated resveratrol glycosides. Significantly higher (90%) bioconversion of resveratrol was achieved with α-d-glucose as the sugar donor to produce four different glucosides of resveratrol: resveratrol 3-O-β-d-glucoside, resveratrol 4′-O-β-d-glucoside, resveratrol 3,5-O-β-d-diglucoside, and resveratrol 3,5,4′-O-β-d-triglucoside. The conversion rates and numbers of products formed were found to vary with the other NDP sugar donors. Resveratrol 3-O-β-d-2-deoxyglucoside and resveratrol 3,5-O-β-d-di-2-deoxyglucoside were found to be produced using TDP-2-deoxyglucose as a donor; however, the monoglycosides resveratrol 4′-O-β-d-galactoside, resveratrol 4′-O-β-d-viosaminoside, resveratrol 3-O-β-l-rhamnoside, and resveratrol 3-O-β-l-fucoside were produced from the respective sugar donors. Altogether, 10 diverse glycoside derivatives of the medically important resveratrol were generated, demonstrating the capacity of YjiC to produce structurally diverse resveratrol glycosides.  相似文献   

4.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

5.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

6.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

7.
β-Primeverosidase (PD) is a disaccharide-specific β-glycosidase in tea leaves. This enzyme is involved in aroma formation during the manufacturing process of oolong tea and black tea. PD hydrolyzes β-primeveroside (6-O-β-d-xylopyranosyl-β-d-glucopyranoside) at the β-glycosidic bond of primeverose to aglycone, and releases aromatic alcoholic volatiles of aglycones. PD only accepts primeverose as the glycone substrate, but broadly accepts various aglycones, including 2-phenylethanol, benzyl alcohol, linalool, and geraniol. We determined the crystal structure of PD complexes using highly specific disaccharide amidine inhibitors, N-β-primeverosylamidines, and revealed the architecture of the active site responsible for substrate specificity. We identified three subsites in the active site: subsite −2 specific for 6-O-β-d-xylopyranosyl, subsite −1 well conserved among β-glucosidases and specific for β-d-glucopyranosyl, and wide subsite +1 for hydrophobic aglycone. Glu-470, Ser-473, and Gln-477 act as the specific hydrogen bond donors for 6-O-β-d-xylopyranosyl in subsite −2. On the other hand, subsite +1 was a large hydrophobic cavity that accommodates various aromatic aglycones. Compared with aglycone-specific β-glucosidases of the glycoside hydrolase family 1, PD lacks the Trp crucial for aglycone recognition, and the resultant large cavity accepts aglycone and 6-O-β-d-xylopyranosyl together. PD recognizes the β-primeverosides in subsites −1 and −2 by hydrogen bonds, whereas the large subsite +1 loosely accommodates various aglycones. The glycone-specific activity of PD for broad aglycone substrates results in selective and multiple release of temporally stored alcoholic volatile aglycones of β-primeveroside.  相似文献   

8.
Brief formalin fixation in the cold prior to histochemical assay of rat liver and pancreas for various dehydrogenases has been used successfully to circumvent the structural damage and enzymatic loss to which mitochondria of frozen sections would otherwise be subject. To obtain an optimal result a single set of conditions has been devised, including fixation prior to freezing of minute (finely diced) organ blocks in graded concentrations (0.7 to 2.0 per cent) of formaldehyde in chilled (1–4°C) Hanks'' balanced salt solution, freezing at not higher than -70°C, and use of nitro-BT or, preferably, tetranitro-BT. The present histochemical study of hepatic and acinar cells indicates that not only are succinic and D-β-hydroxybutyric dehydrogenases located exclusively in the mitochondria but so are lactic, malic, and the isocitric dehydrogenases.  相似文献   

9.
The exact subcellular location of sucrose synthase (UDP-d-glucose: d-fructose 2-α-d-glucosyltransferase, EC 2.4.1.13) in Helianthus tuberosus tubers was studied by comparison of its activity in protoplasts with that of vacuoles isolated from them. Assuming 100% of the β-N-acetylglucosaminidase activity to be of vacuolar origin, less than 5% of both the sucrose synthase activity and the extravacuolar marker NAD-malate dehydrogenase was detected in the vacuole preparations. Sucrose synthase is therefore an extravacuolar enzyme. Its role in the inulin metabolism of H. tuberosus is discussed.  相似文献   

10.
Properties of an Aminotransferase of Pea (Pisum sativum L.)   总被引:2,自引:2,他引:0  
A transaminase (aminotransferase, EC 2.6.1) fraction was partially purified from shoot tips of pea (Pisum sativum L. cv. Alaska) seedlings. With α-ketoglutarate as co-substrate, the enzyme transaminated the following aromatic amino acids: d,l-tryptophan, d,l-tyrosine, and d,l-phenylalanine, as well as the following aliphatic amino acids: d,l-alanine, d,l-methionine, and d,l-leucine. Of other α-keto acids tested, pyruvate and oxalacetate were more active than α-ketoglutarate with d,l-tryptophan. Stoichiometric yields of indolepyruvate and glutamate were obtained with d,l-tryptophan and α-ketoglutarate as co-substrates. The specific activity was three times higher with d-tryptophan than with l-tryptophan.  相似文献   

11.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

12.
Davis B  Merrett MJ 《Plant physiology》1973,51(6):1127-1132
Sucrose density gradient centrifugation of broken cell suspensions of autotrophically grown Euglena gracilis Klebs. has allowed the separation of chloroplasts, mitochondria, and peroxisomes. Chlorophyll was taken as a marker for chloroplasts, fumarase and succinate dehydrogenase for mitochondria, and glycolate oxidoreductase for peroxisomes. Peaks of malate dehydrogenase (l-malate-NAD oxidoreductase, EC 1.1.1.37) activity were found in the mitochondrial and peroxisomal fractions. Acrylamide gel electrophoresis showed specific isoenzymes in the mitochondrial and peroxisomal fractions and a third isoenzyme in the supernatant. The mitochondrial isoenzyme which had a Km (oxaloacetate) of 30μm was inhibited by oxaloacetate concentrations above 0.17 mm, an inhibition of 50% being given by 0.9 mm oxaloacetate. The peroxisomal isoenzyme had a Km (oxaloacetate) of 24 μm, was inhibited by oxaloacetate concentrations above 0.13 mm, 50% inhibition being given by 0.25 mm oxaloacetate. Malate dehydrogenase activity in the supernatant did not show inhibition by increasing oxaloacetate concentration, the Km (oxaloacetate) being 91 μm.  相似文献   

13.

Introduction

Similar to matrix metalloproteinases, glycosidases also play a major role in cartilage degradation. Carbohydrate cleavage products, generated by these latter enzymes, are released from degrading cartilage during arthritis. Some of the cleavage products (such as hyaluronate oligosaccharides) have been shown to bind to Toll-like receptors and provide endogenous danger signals, while others (like N-acetyl glucosamine) are reported to have chondroprotective functions. In the current study for the first time we systematically investigated the expression of glycosidases within the joints.

Methods

Expressions of β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, sperm adhesion molecule 1 and klotho genes were measured in synovial fibroblasts and synovial membrane samples of patients with rheumatoid arthritis and osteoarthritis by real-time PCR. β-D-Glucuronidase, β-D-glucosaminidase and β-D-galactosaminidase activities were characterized using chromogenic or fluorogenic substrates. Synovial fibroblast-derived microvesicles were also tested for glycosidase activity.

Results

According to our data, β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, and klotho are expressed in the synovial membrane. Hexosaminidase is the major glycosidase expressed within the joints, and it is primarily produced by synovial fibroblasts. HexA subunit gene, one of the two genes encoding for the alpha or the beta chains of hexosaminidase, was characterized by the strongest gene expression. It was followed by the expression of HexB subunit gene and the β-D-glucuronidase gene, while the expression of hyaluronidase-1 gene and the klotho gene was rather low in both synovial fibroblasts and synovial membrane samples. Tumor growth factor-β1 profoundly downregulated glycosidase expression in both rheumatoid arthritis and osteoarthritis derived synovial fibroblasts. In addition, expression of cartilage-degrading glycosidases was moderately downregulated by proinflammatory cytokines including TNFα, IL-1β and IL-17.

Conclusions

According to our present data, glycosidases expressed by synovial membranes and synovial fibroblasts are under negative regulation by some locally expressed cytokines both in rheumatoid arthritis and osteoarthritis. This does not exclude the possibility that these enzymes may contribute significantly to cartilage degradation in both joint diseases if acting in collaboration with the differentially upregulated proteases to deplete cartilage in glycosaminoglycans.  相似文献   

14.
1. A method of assaying 14C in ketone bodies present in blood by using liquid-scintillation counting is described. 2. d(−)-β-Hydroxy[14C]butyrate is converted quantitatively into [14C]acetoacetate by means of a coupled oxidoreduction reaction involving NAD+, d(−)-β-hydroxybutyrate dehydrogenase and malic dehydrogenase in the presence of a high concentration of oxaloacetate. 3. [14C]Acetoacetate is decarboxylated to acetone and carbon dioxide which are trapped separately in a double-well flask and counted subsequently. 4. The method permits the determination of 14C activity in the individual ketone bodies and allows the activity in the carboxyl carbon atoms of acetoacetate or of d(−)-β-hydroxybutyrate to be assayed separately from the activity in the remainder of the molecule. 5. Recoveries of 14C-labelled ketone bodies added to blood approach 100% with good reproducibility in replicate analyses.  相似文献   

15.
A new β-glucosidase from a novel strain of Terrabacter ginsenosidimutans (Gsoil 3082T) obtained from the soil of a ginseng farm was characterized, and the gene, bgpA (1,947 bp), was cloned in Escherichia coli. The enzyme catalyzed the conversion of ginsenoside Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to the more pharmacologically active rare ginsenosides gypenoside XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, gypenoside LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol]. A BLAST search of the bgpA sequence revealed significant homology to family 3 glycoside hydrolases. Expressed in E. coli, β-glucosidase had apparent Km values of 4.2 ± 0.8 and 0.14 ± 0.05 mM and Vmax values of 100.6 ± 17.1 and 329 ± 31 μmol·min−1·mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside and Rb1, respectively. The enzyme catalyzed the hydrolysis of the two glucose moieties attached to the C-3 position of ginsenoside Rb1, and the outer glucose attached to the C-20 position at pH 7.0 and 37°C. These cleavages occurred in a defined order, with the outer glucose of C-3 cleaved first, followed by the inner glucose of C-3, and finally the outer glucose of C-20. These results indicated that BgpA selectively and sequentially converts ginsenoside Rb1 to the rare ginsenosides gypenoside XVII, gypenoside LXXV, and then C-K. Herein is the first report of the cloning and characterization of a novel ginsenoside-transforming β-glucosidase of the glycoside hydrolase family 3.Ginseng refers to the roots of members of the plant genus Panax, which have been used as a traditional medicine in Asian countries for over 2,000 years due to their observed beneficial effects on human health. Ginseng saponins, also referred to as ginsenosides, are the major active components of ginseng (27). Various biological activities have been ascribed to ginseng saponins, including anti-inflammatory activity (43), antitumor effects (23, 39), and neuroprotective and immunoprotective (15, 31) effects.Ginsenosides can be categorized as protopanaxadiol (PPD), protopanaxatriol, and oleanane saponins, based on the structure of the aglycon, with a dammarane skeleton (29). The PPD-type ginsenosides are further classified into subgroups based on the position and number of sugar moieties attached to the aglycon at positions C-3 and C-20. For example, one of the largest PPD-type ginsenosides, Rb1 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, contains 4 glucose moieties, two each attached via glycosidic linkages to the C-3 and C-20 positions of the aglycon (Fig. (Fig.11).Open in a separate windowFIG. 1.Chemical structures of protopanaxadiol and protopanaxatriol ginsenosides (5). The ginsenosides represented here are all (S)-type ginsenosides. glc, β-d-glucopyranosyl; arap, α-l-arabinopyranosyl; araf, α-l-arabinofuranosyl; rha, α-l-rhamnopyranosyl; Gyp, gypenoside; C, compound.Because of their size, low solubility, and poor permeability across the cell membrane, it is difficult for human body to directly absorb large ginsenosides (44), although these components constitute the major portion of the total ginsenoside in raw ginseng (30). Moreover, the lack of the availability of the rare ginsensoides limits the research on their biological and medicinal properties. Therefore, transformation of these major ginsenosides into smaller deglycosylated ginsenosides, which are more effective in in vivo physiological action, is required (1, 37).The production of large amounts of rare ginsenosides from the major ginsenosides can be accomplished through a number of physiochemical methods such as heating (17), acid treatment (2), and alkali treatment (48). However, these approaches produce nonspecific racemic mixtures of rare ginsenosides. As an alternative, enzymatic methods have been explored as a way to convert the major ginsenosides into more pharmacologically active rare ginsenosides in a more specific manner (14, 20).To date, three types of glycoside hydrolases, β-d-glucosidase, α-l-arabinopyranosidase, and α-l-arabinofuranosidase, have been found to be involved in the biotransformation of PPD-type ginsenosides. For example, a β-glucosidase isolated from a fungus converts Rb1 to C-K [20-O-(β-d-glucopyranosyl)-20(S)-protopanaxadiol] (45), and an α-l-arabinopyranosidase and α-l-arabinofuranosidase have been isolated from an intestinal bacterium that hydrolyze, respectively, Rb2 {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-[α-l-arabinopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} and Rc {3-O-[β-d-glucopyranosyl-(1-2)-β-d-glucopyranosyl]-20-O- [α-l-arabinofuranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to Rd (34). Two recombinant enzymes that convert major ginsenosides into rare ginsenosides have been cloned and expressed in Escherichia coli: Solfolobus solfataricus β-glycosidase, which transforms Rb1 or Rc to C-K (28), and β-glucosidase from a soil metagenome, which transforms Rb1 to Rd (16). Both of these glycoside hydrolases are family 1 glycoside hydrolases.Here, we report the cloning and expression in E. coli of a gene (bgpA) encoding a new ginsenoside-hydrolyzing β-glucosidase from a novel bacterial strain, Terrabacter ginsenosidimutans sp. nov. Gsoil 3082, isolated from a ginseng farm in Korea. BgpA is a family 3 glycoside hydrolase, and the recombinant enzyme employs a different enzymatic pathway from ginsenoside-hydrolyzing family 1 glycoside hydrolases. BgpA preferentially and sequentially hydrolyzed the terminal and inner glucoses at the C-3 position of ginsenoside Rb1 and then the outer glucose at the C-20 position. Thus, BgpA could be effective in the biotransformation of ginsenoside Rb1 to gypenoside (Gyp) XVII {3-O-β-d-glucopyranosyl-20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, Gyp LXXV {20-O-[β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol}, and C-K.  相似文献   

16.
An enzyme catalyzing the formation of δ-aminolevulinic acid by transamination of γ,δ-dioxovaleric acid with l-α-alanine, l-glutamic acid, or l-phenylalanine has been detected in extracts of Chlorella vulgaris. The activity of this enzyme does not appear to parallel changes in chlorophyll content in a Chlorella mutant which requires light for chlorophyll production. The role of this enzyme in δ-aminolevulinic acid metabolism in plants is not clearly understood.  相似文献   

17.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

18.
The oxidation of d- and l-glycerate by rat liver   总被引:1,自引:1,他引:0  
1. The interconversion of hydroxypyruvate and l-glycerate in the presence of NAD and rat-liver l-lactate dehydrogenase has been demonstrated. Michaelis constants for these substrates together with an equilibrium constant have been determined and compared with those for pyruvate and l-lactate. 2. The presence of d-glycerate dehydrogenase in rat liver has been confirmed and the enzyme has been purified 16–20-fold from the supernatant fraction of a homogenate, when it is free of l-lactate dehydrogenase, with a 23–29% recovery. The enzyme catalyses the interconversion of hydroxypyruvate and d-glycerate in the presence of either NAD or NADP with almost equal efficiency. d-Glycerate dehydrogenase also catalyses the reduction of glyoxylate, but is distinct from l-lactate dehydrogenase in that it fails to act on pyruvate, d-lactate or l-lactate. The enzyme is strongly dependent on free thiol groups, as shown by inhibition with p-chloromercuribenzoate, and in the presence of sodium chloride the reduction of hydroxypyruvate is activated. Michaelis constants for these substrates of d-glycerate dehydrogenase and an equilibrium constant for the NAD-catalysed reaction have been calculated. 3. An explanation for the lowered Vmax. with d-glycerate as compared with dl-glycerate for the rabbit-kidney d-α-hydroxy acid dehydrogenase has been proposed.  相似文献   

19.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

20.
We characterized Teth514_1788 and Teth514_1789, belonging to glycoside hydrolase family 130, from Thermoanaerobacter sp. X-514. These two enzymes catalyzed the synthesis of 1,2-β-oligomannan using β-1,2-mannobiose and d-mannose as the optimal acceptors, respectively, in the presence of the donor α-d-mannose 1-phosphate. Kinetic analysis of the phosphorolytic reaction toward 1,2-β-oligomannan revealed that these enzymes followed a typical sequential Bi Bi mechanism. The kinetic parameters of the phosphorolysis of 1,2-β-oligomannan indicate that Teth514_1788 and Teth514_1789 prefer 1,2-β-oligomannans containing a DP ≥3 and β-1,2-Man2, respectively. These results indicate that the two enzymes are novel inverting phosphorylases that exhibit distinct chain-length specificities toward 1,2-β-oligomannan. Here, we propose 1,2-β-oligomannan:phosphate α-d-mannosyltransferase as the systematic name and 1,2-β-oligomannan phosphorylase as the short name for Teth514_1788 and β-1,2-mannobiose:phosphate α-d-mannosyltransferase as the systematic name and β-1,2-mannobiose phosphorylase as the short name for Teth514_1789.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号