首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

2.
The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.  相似文献   

3.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

4.
Synopsis The relative thickness of intracellular membranes of epithelial cells in the ventral lobe of the rat prostrate was measured by a densitometric method. Glutaraldehyde perfusion followed by ruthenium tetroxide immersion fixation appeared to be the most suitable method for membrane thickness measurements. By thickness, the membranes could be roughly subdivided into three groups. The inner and outer membranes of the mitochondrion made up the thinnest membranes of the cell. The second group of membranes consisted of the membranes of the rough-surfaced endoplasmic reticulum and the Golgi apparatus, the different faces of the latter organelle, and the Golgi vesicles. The thickest group of membranes included those of the cell membrane, secretory granules, condensing vacuoles, lysosomes, autophagic vacuoles and multivesicular bodies. The differences in thickness of the membranes are probably due to the varying protein/lipid ratio, and the qualities and proportions of the different lipids in the membranes.  相似文献   

5.
In the early stage of Oryzias spermiogenesis, an axonemal bud appears at the distal end of a centriole characterized by its electron dense accessories. When the axoneme begins to grow in the cytoplasm, small vesicles come to surround it. These vesicles are similar to those produced by the Golgi apparatus which lies close to the growing axoneme. At this stage, the spermatid cell membranes disappear, causing transformation of the mononuclear spermatids into a multinucleated syncytium. As each axoneme elongates in the syncytium, it is enveloped by a cylindrical array of vesicles which are most likely derived from the Golgi apparatus. Shortly after this stage, the syncytium is again partitioned by cell membranes, restoring the existence of mononuclear spermatids. The arrayed vesicles fuse with each other to form two concentric membranes surrounding the axoneme. The inner membrane becomes the flagellar membrane and the outer one, the membrane of a flagellar sheath. These observations lead to the conclusion that the formation of the flagellar membrane is due to the fusion of vesicles surrounding the axoneme which are derived from the Golgi apparatus. In the course of spermiogenesis, no indication of an acrosomal structure is observed.  相似文献   

6.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

7.
1. Experiments were carried out to decide whether or not the electromotive properties of dried collodion membranes depend upon their thickness. 2. A number of dried collodion membranes of varying thickness, 3–160 µ, were prepared from collodion preparations of different electrochemical activity. The characteristic concentration potentials across them were measured and the means of these values determined for each thickness. 3. The characteristic concentration potentials across dried collodion membranes are a function of their thickness. The thinnest membranes yield in all cases the lowest concentration potentials; increasingly thicker membranes give increasingly higher potential values, until a constant value is reached which is characteristic of the particular collodion preparation used. With electrochemically active collodion, characteristic concentration potentials approaching the thermodynamically possible maximum are obtained with membranes of only 10 µ thickness, thinner membranes giving appreciably lower values. With two rather inactive commercial collodion preparations the characteristic concentration potential increases from about 30 mv. for membranes 3 µ thick to about 42 mv. for 20 µ membranes; still thicker membranes do not show a significant increase in the potential values. With a highly purified collodion preparation the constant maximum value was found to be about 32 mv., 4 µ thick membranes giving only about 22 mv. 4. These results do not support the homogeneous phase theory as applied to the dried collodion membrane. They are readily compatible with the micellar-structural theory. Several special possible cases of the latter as applied to the dried collodion membrane are discussed.  相似文献   

8.
The 100-110-kD proteins (alpha-, beta-, beta'-, and gamma-adaptins) of clathrin-coated vesicles and the 110-kD protein (beta-COP) of the nonclathrin-coated vesicles that mediate constitutive transport through the Golgi have homologous protein sequences. To determine whether homologous processes are involved in assembly of the two types of coated vesicles, the membrane binding properties of their coat proteins were compared. After treatment of MDBK cells with the fungal metabolite Brefeldin A (BFA), beta-COP was redistributed to the cytoplasm within 15 s, gamma-adaptin and clathrin in the trans-Golgi network (TGN) dispersed within 30 s, but the alpha-adaptin and clathrin present on coated pits and vesicles derived from the plasma membrane remained membrane associated even after a 15-min exposure to BFA. In PtK1 cells and MDCK cells, BFA did not affect beta-COP binding or Golgi morphology but still induced redistribution of gamma-adaptin and clathrin from TGN membranes to the cytoplasm. Thus BFA affects the binding of coat proteins to membranes in the Golgi region (Golgi apparatus and TGN) but not plasma membranes. However, the Golgi binding interactions of beta-COP and gamma-adaptin are distinct and differentially sensitive to BFA. BFA treatment did not release gamma-adaptin or clathrin from purified clathrin-coated vesicles, suggesting that their distribution to the cytoplasm after BFA treatment of cells was due to interference with their rebinding to TGN membranes after a normal cycle of disassembly. This was confirmed using an in vitro assay in which gamma-adaptin binding to TGN membranes was blocked by BFA and enhanced by GTP gamma S, similar to the binding of beta-COP to Golgi membranes. These results suggest the involvement of GTP-dependent proteins in the association of the 100-kD coat proteins with membranes in the Golgi region of the cell.  相似文献   

9.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

10.
Nagasato C  Motomura T 《Protoplasma》2002,219(3-4):140-149
Summary. The ultrastructure of mitosis and cytokinesis in Scytosiphon lomentaria (Lyngbye) Link zygotes was studied by freeze fixation and substitution. During mitosis, the nuclear envelope remained mostly intact. Spindle microtubules (MTs) from the centrosome passed through the gaps of the nuclear envelope and entered the nucleoplasm. In anaphase and telophase, two daughter chromosome masses were partially surrounded with endoplasmic reticulum. After telophase, the nuclear envelope was reconstructed and two daughter nuclei formed. Then, several large vacuoles occupied the space between the daughter nuclei. MTs from the centrosomes extended toward the mid-plane between two daughter nuclei, among the vacuoles. At that time, Golgi bodies near the centrosome actively produced many vesicles. Midway between the daughter nuclei, small globular vesicles and tubular cisternae accumulated. These vesicles derived from Golgi bodies were transported from the centrosome to the future division plane. Cytokinesis then proceeded by fusion of these vesicles, but not by a furrowing of the plasma membrane. After completion of the continuity with the plasma membrane, cell wall material was deposited between the plasma membranes. The tubular cisternae were still observed at the periphery of the newly formed septum. Microfilaments could not be observed by this procedure. We conclude that cytokinesis in the brown algae proceeds by fusion of Golgi vesicles and tubular cisternae, not by a furrowing of the plasma membrane. Received September 12, 2001 Accepted November 12, 2001  相似文献   

11.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

12.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

13.
A membrane fraction enriched in plasma membrane and tonoplast vesicles was isolated from green leaves of Spinacia oleracea L. and subjected to subfractionation by free-flow electrophoresis. The most electronegative membrane vesicle fraction collected after the free-flow electrophoretic separation was identified as derived from tonoplast, while the least electronegative fraction was identified as derived from plasma membrane. The identification of the fractions was based on membrane morphology, and on the presence or absence of biochemical markers. The plasma membrane fraction was enriched in thick (9–11 nm) membranes which bound N-1-naphthylphthalamic acid (NPA), and reacted with phosphotungstic acid at low pH on thin sections for electron microscopy. The tonoplast fraction was enriched in vesicles with 7–9 nm thick membranes that neither bound NPA nor reacted with phosphotungstic acid at low pH. Both the plasma membrane and the tonoplast fraction were about 90% pure, with a cross-contamination of not more than 2%. Membrane vesicles originating from dictyosomes, endoplasmic reticulum, mitochondria, plastids, or peroxisomes contaminated the plasma membrane and the tonoplast fractions by a few % only. In leaves of photoinduced plants (24 h light period), the plasma membranes were thicker than in control leaves (8 h light, 16 h dark). The plasma membrane fraction obtained from photo-induced leaves by free-flow electrophoresis retained this increase in thickness, showing not only that photoinduction alters plasma membrane structure, but also that this change is stable to isolation.  相似文献   

14.
The procedure for immunochemical adsorption of vesicles with specific antigen on their outer surfaces was improved. When microsomal vesicles were mixed with Staphylococcus aureus cells coated with the antibody against NADPH-cytochrome c reductase, more than 90% of the enzyme activity was adsorbed on the cell, whereas, only about 10% of the activity was adsorbed on cells coated with the same amount of anti-ovalbumin antibody. NADH-cytochrome c reductase and aldehyde dehydrogenase activities were adsorbed on the cell to the same extent as was NADPH-cytochrome c reductase activity. Under this condition, there was no adsorption of the activities of the marker enzymes of lysosomes and Golgi apparatus, whereas large amounts of the activities of the plasma membrane enzymes were adsorbed. The specific activity of NADPH-cytochrome c reductase in the adsorbed vesicles from the microsomal fractions increased considerably. In contrast, marker enzymes of the Golgi or of the plasma membranes could be enriched in unadsorbed vesicles from the Golgi fractions.  相似文献   

15.
The formation and subsequent dissolution of a common bridge of cytoplasm between conjugating ciliated protozoan cells provides an excellent opportunity to follow the dynamics of the cellular membrane systems involved in this process. In particular, separation of conjugant partners offers the chance to observe, at a fixed site on the cell surface, how the ciliate surface complex of plasma and alveolar membranes (collectively termed the “pellicle”) is constructed. Consequently, cortical and cellular membranes of Euplotes aediculatus were studied by light and electron microscopy through the conjugation sequence. A conjugant fusion zone of shared cytoplasm elaborates between the partner cells within their respective oral fields (peristomes) to include microtubules, cytosol, and a concentrated endoplasmic reticulum (heavily stained by osmium impregnation techniques) that may also be continuous with cortical ER of each cell. Cortical membranes displacd by fusion are autolyzed in acid phosphatase-positive lysosomes in the fusion zone. As conjugants separate, expansion of the plasma membrane may occur through the fusion of vesicles with the plasma membrane, presumably at bare membrane, presumably at bare membrane patches near the fusion zone. The underlying cortical alveolar membranes and their plate-like contents are reconstructed beneath the plasma membrane, apparently by multiple fusions of dense-cored alveolar precursor vesicles (APVs). These precursor vesicles themselves appear to condense directly from the smooth ER present in the fusion zone. No Golgi apparatus was visible in the fusion zone cytoplasm, and no step of APV maturation that might involve the Golgi complex was noted.  相似文献   

16.
Retinal rod photoreceptor cells absorb light at one end and establish synaptic contacts on the other. Light sensitivity is conferred by a set of membrane and cytosol proteins that are gathered at one end of the cell to form a specialized organelle, the rod outer segment (ROS). The ROS is composed of rhodopsin-laden, flattened disk-shaped membranes enveloped by the cell's plasma membrane. Rhodopsin is synthesized on elements of the rough endoplasmic reticulum and Golgi apparatus near the nucleus in the inner segment. From this synthetic site, the membrane-bound apoprotein, opsin, is released from the Golgi in the membranes of small vesicles. These vesicles are transported through the cytoplasm of the inner segment until they reach its apical plasma membrane. At that site, opsin-laden vesicles appear to fuse near the base of the connecting cilium that joins the inner and outer segments. This fusion inserts opsin into the plasma membrane of the photoreceptor. Opsin becomes incorporated into the disk membrane by a process of membrane expansion and fusion to form the flattened disks of the outer segment. Within the disks, opsin is highly mobile, and rapidly rotates and traverses the disk surface. Despite its mobility in the outer segment, quantitative electron microscopic, immunocytochemical, and autoradiographic studies of opsin distribution demonstrate that little opsin is detectable in the inner segment plasma membrane, although its bilayer is in continuity with the plasma membrane of the outer segment. The photoreceptor successfully establishes the polarized distribution of its membrane proteins by restricting the redistribution of opsin after vectorially transporting it to one end of the cell on post-Golgi vesicles.  相似文献   

17.
THE FINE STRUCTURE OF THE TRANSITIONAL EPITHELIUM OF RAT URETER   总被引:21,自引:15,他引:6       下载免费PDF全文
The fine structure of the transitional epithelium of rat ureter has been studied in thin sections with the electron microscope, including some stained cytochemically to show nucleoside triphosphatase activity. The epithelium is three to four cells deep with cuboidal or columnar basal cells, intermediate cells, and superficial squamous cells. The basal cells are attached by half desmosomes, or attachment plates, on their basal membranes to a basement membrane which separates the epithelium from the lamina propria. Fine extracellular fibres, ca. 100 A in diameter, are to be found in the connective tissue layer immediately below the basement membrane of this epithelium. The plasma membranes of the basal and intermediate cells and the lateral and basal membranes of the squamous cells are deeply interdigitated, and nucleoside triphosphatase activity is associated with them. All the cells have a dense feltwork of tonofilaments which ramify throughout the cytoplasm. The existence of junctional complexes, comprising a zonula occludens, zonula adhaerens, and macula adhaerens or desmosome, between the lateral borders of the squamous cells is reported. It is suggested that this complex is the major obstacle to the free flow of water from the extracellular spaces into the hypertonic urine. The free luminal surface of the squamous cells and many cytoplasmic vesicles in these cells are bounded by an unusually thick plasma membrane. The three leaflets of this unit membrane are asymmetric, with the outer one about twice as thick as the innermost one. The vesicles and the plasma membrane maintain angular conformations which suggest the membrane to be unusually rigid. No nucleoside triphosphatase activity is associated with this membrane. Arguments are presented to support a suggestion that this thick plasma membrane is the morphological site of a passive permeability barrier to water flow across the cells, and that keratin may be included in the membrane structure. The possible origin of the thick plasma membrane in the Golgi complex is discussed. Bodies with heterogeneous contents, including characteristic hexagonally packed stacks of thick membranes, are described. It is suggested that these are "disposal units" for old or surplus thick membrane. A cell type is described, which forms only 0.1 to 0.5 per cent of the total cell population and contains bundles of tubular fibres or crystallites. Their origin and function are not known.  相似文献   

18.
The transverse distribution of phospholipids in the membranes of subfractions of the Golgi complex was investigated by using phospholipase C and 2,4,6-trinitrobenzenesulphonic acid as probes. In trans-enriched Golgi membranes, 26% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate or for hydrolysis by phospholipase C, and 72% of the phosphatidylcholine is hydrolysed by phospholipase C. In cis-enriched Golgi membranes, 45% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate and for hydrolysis by phospholipase C, and 95% of the phosphatidylcholine is hydrolysed by phospholipase C. Under the conditions used with either probe the contents of the Golgi vesicles labelled with either [3H]palmitic acid or [14C]leucine were retained. Galactosyltransferase activity of the membrane vesicles was partially inhibited by the experimental procedures used to investigate the transverse distribution of phospholipids. However, the residual activity was latent, suggesting that the vesicles remained closed. Trinitrobenzenesulphonic acid caused no detectable morphological change in either Golgi fraction. Phospholipase C treatment caused morphological changes, including fusion of vesicles and the appearance of 'signet-ring' profiles in some vesicles; however, the vesicles remained closed and the bilayer was retained. It appears, therefore, that neither probe causes major disruption of the Golgi vesicles nor gains access to the inner surface of the membrane bilayer. These observations suggest that phospholipids have a transverse asymmetry in Golgi membranes, that this distribution differs in trans and cis membranes, and that the phospholipid structure of Golgi membranes is inconsistent with a simple flow of membrane bilayer from endoplasmic reticulum to Golgi membranes to plasma membrane.  相似文献   

19.
D. J. Morré 《Protoplasma》1994,180(1-2):3-13
Summary Physical membrane displacement is a process common to all forms of vesicle budding as well as cell enlargement and pleomorphic shape changes. Cell-free reconstitution of membrane budding has been achieved with transitional endoplasmic reticulum fractions from both plants and animals where 50 to 70 nm transition vesicles have been observed to bud from the part-rough, part-smooth membrane elements that define transitional endoplasmic reticulum. This budding phenomenon requires ATP, is facilitated by cytosol and guanine nucleotides, and is both time- and temperature-dependent. The transitional endoplasmic reticulum buds that form when concentrated by preparative free-flow electrophoresis will attach specifically to cis Golgi apparatus membranes immobilized on nitrocellulose as an acceptor compartment. Golgi apparatus membranes derived from the trans compartment do not serve as an efficient acceptor compartment. Transfer of the vesicles once formed is rapid, nearly complete and no longer dependent upon added ATP. Transfer shows a strict temperature dependency corresponding to that of the intact cell where at temperatures of 16°C or below, vesicles form but do not attach to cis Golgi whereas at temperatures of greater than 16°C, vesicles both form and fuse. The principle ATPase of transitional endoplasmic reticulum which may be involved in the budding process has been identified, characterized and isolated. A 38 kDa cis Golgi apparatus associated protein also has been identified as a potential candidate as a docking protein. Transfer between trans Golgi apparatus and the plasma membrane also has been studied by cell-free analysis. Here, transfer has been found to be stimulated by NADH or NADH plus ascorbate. The role of NADH is unknown but the ability of plant and Golgi apparatus to oxidize NADH is inhibited by brefeldin A, a compound known to block membrane trafficking even at the level of the trans Golgi network. NADH oxidase activity of plasma membranes also has been described and is inhibited as well by brefeldin. Recent observations suggest that brefeldin A may block both the formation of vesicles at the trans Golgi apparatus as well as auxin hormone-stimulated cell elongation in plants. This once again raises the possibility of whether or not plant cell elongation is obligatorily mediated by membrane input from the Golgi apparatus. The latter seems unlikely based on two additional lines of evidence. The first is that auxin-induced cell elongation in plants shows no sharp temperature transition over the range of 4 to 24°C, whereas production of secretory vesicles from the trans Golgi apparatus appears to be largely prevented at temperatures of 18°C or less. Secondly, the sodium selective ionophore, monensin, which effectively blocks the formation of functional secretory vesicles at the trans Golgi apparatus, is also largely without effect on auxin-induced cell elongation for periods of 4 h or longer. Taken together the findings suggest that the action of brefeldin A on vesicle budding at the Golgi apparatus and cell enlargement, are not directly correlated but may represent a common action of the drug on some constituent essential to membrane displacement mechanisms.Abbreviations BFA brefeldin A - IAA indole-3-acetic acid; 2, 4-D 2, 4-dichlorophenoxyacetic acid - NSF N-ethylmaleimide-sensitive factor Much of the information summarized in this report was presented as a plenary lecture at the XV International Botanical Congress Tokyo, Yokohama, Japan, August 28–September 3, 1993.  相似文献   

20.
Several mechanisms have been suggested to explain how secretory cells remove from the plasmalemma the excess membrane resulting from the insertion of granule membrane during exocytosis: intact patches of membrane may be internalized and then reutilized within the cell; alternatively these membranes may be either disassembled to subunits or degraded. In the latter case new membranes should be synthetized at other sites of the cell, probably in the rough-surfaced endoplasmic reticulum (RER) and the Golgi complex. In the present research, membrane subfractions were obtained from rough microsomes (derived from fragmented and resealed RER cisternae) and from smooth microsomes (primarily contributed by Golgi stacks and vesicles) of the guinea pig pancreas by incubation at 4°C for 4 hr in 0.0005 M puromycin at high ionic strength followed by mild (pH 7.8) alkaline extraction with 0.2 M NaHCO3. Such treatments release the majority of nonmembrane components of both microsomal fractions (i.e., contained secretory enzymes, ribosomes, and absorbed proteins of the cell sap) and allow the membranes to be recovered by centrifugation. The effect of in vitro stimulation of enzyme secretion (brought about in pancreas slices by 0.0001 M carbamoyl choline) on the rate of synthesis of the phospholipid (PLP) and protein of these membranes was then investigated. In agreement with previous data, we observed that in stimulated slices the synthesis of microsomal PLP was greatly increased. In contrast, the synthesis of microsomal membrane proteins was unchanged. These results suggest that exocytosis is not coupled with an increased rate of synthesis of complete ER and Golgi membranes and are, therefore, consistent with the view that excess plasma membrane is preserved and reutilized, either as discrete membrane patches or as membrane macromolecules, throughout the secretory cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号