首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘琪聪  曾斌 《微生物学通报》2021,48(12):4932-4942
米曲霉作为一种重要的工业微生物,在异源蛋白表达方面已有广泛应用,受限于被表达蛋白的修饰及分泌过程,目前实际生产使用的基因供体主要局限于其他真菌,尤其是丝状真菌。当外源基因来源于植物、昆虫和哺乳动物时,米曲霉所生产的异源蛋白产量及生物活性往往不尽如人意。本文综述了米曲霉作为宿主表达异源蛋白的研究进展,包括其现有的遗传操作手段及异源表达方面的应用及探索,重点介绍了应用过程中面临的挑战和解决策略,另外,对米曲霉表达异源蛋白的应用前景及发展方向进行了展望。  相似文献   

2.
Membrane-surface liquid culture (MSLC) is a promising method for the bioproduction of highly aerobic filamentous fungi [A. Ogawa, A. Yasuhara, T. Tanaka, T. Sakiyama, K. Nakanishi, Production of neutral protease by membrane-surface liquid culture of Aspergillus oryzae IAM2704, J. Ferment. Bioeng. 80 (1995) 35–40]. This paper reports on the production of laccase by Trametes versicolor on a microporous membrane of poly(l-lactic acid) (PLLA), which can be biodegraded via composting after use. The membrane was stable as a support for 24 days at 30 °C. During the first 9 days in MSLC, the fungus produced half as much laccase as it did in liquid-surface culture (LSC); however, the mycelium on the membrane was able to be re-used five times for laccase production. The laccase production was accelerated in the repeated use of the culture while the mycelium in LSC ceased to produce the enzyme. This study shows that compostable PLLA microporous membranes can be used for enzyme production by MSLC of filamentous fungi.  相似文献   

3.
4.
Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.  相似文献   

5.
6.
Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.  相似文献   

7.
8.
9.
《Autophagy》2013,9(2):128-129
Filamentous fungi form aerial hyphae on solid medium, and some of these differentiate into conidiophores for asexual sporulation (conidiation). In the filamentous deuteromycete, Aspergillus oryzae, aerial hyphae are formed from the foot cells and some differentiate into conidiophores, which are composed of vesicles, phialides and conidia. Recently, we isolated the yeast ATG8 gene homologue Aoatg8 from A. oryzae, and visualized autophagy by the expression of an EGFP (enhanced green fluorescent protein)–AoAtg8 fusion protein and DsRed2 protein in this fungus. Furthermore, by constructing the Aoatg8 deletion and conditional mutants, we demonstrated that autophagy functions during the process of differentiation of aerial hyphae, conidiation and conidial germination in A. oryzae. Here, we discuss the contribution of autophagy towards the differentiation and germination processes in filamentous fungi.

Addendum to:

Functional Analysis of the ATG8 Homologue Aoatg8 and Role of Autophagy in Differentiation and Germination in Aspergillus oryzae

T. Kikuma, M. Ohneda, M. Arioka and K. Kitamoto

Eukaryot Cell 2006; 5:1328-36  相似文献   

10.
11.
We have cloned the Aspergillus niger dapB gene. Analysis of its nucleotide sequence and the corresponding protein sequence indicates that the gene encodes a type IV dipeptidyl aminopeptidase (DPP IV). Based upon its deduced sequence we predict the presence of a transmembrane domain in the protein. Furthermore, dapB-overexpressing transformants display an increase in intracellular DPP IV activity. This is the first reported characterisation of a dipeptidyl aminopeptidase with a transmembrane domain from a filamentous fungus. Using the dapB sequence as a query, we were able to identify 14 DPP IV-encoding genes, and 12 additional DPPIV proteases in public genomic databases. Phylogenetic analysis reveals that in yeasts there are two clades of genes that encode DPP IV proteases with a transmembrane domain. In this study we demonstrate that, as in yeasts, two classes of DPP IV-encoding genes exist in filamentous fungi. However, only one of these codes for DPP IV proteases with a transmembrane domain. The second type present in filamentous fungi encodes extracellular DPP IV proteases. The dapB gene belongs to the first cluster. We propose that DapB plays a role in the proteolytic maturation of enzymes produced by A. niger.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
13.
14.
For strain improvement of Aspergillus oryzae, development of the transformation system is essential, wherein dominant selectable markers, including drug-resistant genes, are available. However, A. oryzae generally has a relatively high resistance to many antifungal drugs effective against yeasts and other filamentous fungi. In the course of the study, while investigating azole drug resistance in A. oryzae, we isolated a spontaneous mutant that exhibited high resistance to azole fungicides and found that pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter genes were upregulated in the mutant; their overexpression in the wild-type strain increased azole drug resistance. While deletion of the gene designated atrG resulted in increased azole susceptibility, double deletion of atrG and another gene (atrA) resulted in further azole hypersensitivity. Overall, these results indicate that the ABC transporters AtrA and AtrG are involved in azole drug resistance in A. oryzae.  相似文献   

15.
16.
A niaD gene encoding nitrate reductase was isolated from Aspergillus oryzae KBN616 and sequenced. The structural gene comprises 2973 bp and 868 amino acids, which showed a high degree of similarity to nitrate reductases from other filamentous fungi. The coding sequence is interrupted by six introns varying in size from 48 to 98 bp. The intron positions are all conserved among the niaD genes from A. oryzae, Aspergillus nidulans, and Aspergillus niger. A homologous transformation system was developed for an industrial shoyu koji mold, A. oryzae KBN616, based on the nitrate reductase (niaD) of the nitrate assimilation pathway.  相似文献   

17.
Promoter shutoff is a general method for analyzing essential genes, but in the fungus Aspergillus oryzae, no tightly repressed promoters have been reported. To overcome the current limitations of conditional promoters, we examined sorbitol- and galactose-responsive genes using microarrays to identify regulatable genes with only minor physiological and genetic effects. We identified two sorbitol-induced genes (designated as sorA and sorB), cloned their promoters, and built a regulated egfp and brlA expression system. Growth medium-dependent enhanced green fluorescence protein (EGFP) fluorescence and conidiation were confirmed for egfp and brlA under the control of their respective promoters. We also used this shutoff system to regulate the essential rhoA, which demonstrated the expected growth inhibition under repressed growth conditions. Our new sorbitol promoter shutoff system developed can serve as a valuable new tool for essential gene analyses of filamentous fungi.  相似文献   

18.
19.
The fungicide fludioxonil causes hyperactivation of the Hog1p MAPK within the high‐osmolarity glycerol signaling pathway essential for osmoregulation in pathogenic fungi. The molecular regulation of MoHog1p phosphorylation is not completely understood in pathogenic fungi. Thus, we identified and characterized the putative MoHog1p‐interacting phosphatase gene MoPTP2 in the filamentous rice pathogen Magnaporthe oryzae. We found overexpression of MoPTP2 conferred fludioxonil resistance in M. oryzae, whereas the ‘loss of function’ mutant ΔMoptp2 was more susceptible toward the fungicide. Additionally, quantitative phosphoproteome profiling of MoHog1p phosphorylation revealed lower phosphorylation levels of MoHog1p in the MoPtp2p overexpression mutant compared to the wild‐type strain, whereas MoHog1p phosphorylation increased in the ΔMoptp2 mutant. Furthermore, we identified a set of MoHog1p‐dependent genes regulated by the MoPtp2p expression level. Our results indicate that the phosphatase MoPtp2p is involved in the regulation of MoHog1p phosphorylation and that overexpression of the gene MoPTP2 is a novel molecular mechanism of fungicide resistance.  相似文献   

20.
Hyphal fusion is involved in the formation of an interconnected colony in filamentous fungi, and it is the first process in sexual/parasexual reproduction. However, it was difficult to evaluate hyphal fusion efficiency due to the low frequency in Aspergillus oryzae in spite of its industrial significance. Here, we established a method to quantitatively evaluate the hyphal fusion ability of A. oryzae with mixed culture of two different auxotrophic strains, where the ratio of heterokaryotic conidia growing without the auxotrophic requirements reflects the hyphal fusion efficiency. By employing this method, it was demonstrated that AoSO and AoFus3 are required for hyphal fusion, and that hyphal fusion efficiency of A. oryzae was increased by depleting nitrogen source, including large amounts of carbon source, and adjusting pH to 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号