首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galectin-1 has demonstrated a diverse range of activities in relation to cell survival and proliferation. In different circumstances, it acts as a mitogen, as an inhibitor of cell proliferation, and as a promoter of cellular apoptosis. Many of these activities, particularly the mitogenic and apoptotic responses, follow from the interaction of galectin-1 with cell-surface β-galactoside ligands, but there is increasing evidence for protein-protein interactions involving galectin-1, and for a β-galactoside-independent cytostatic mechanism. The bifunctional nature of galectin-1, in conjunction with other experimental variables, makes it difficult to assess the overall outcomes and significance of the growth-regulatory actions in many previous investigations. There is thus a need for well-defined experimental cross-correlation of observations, for which specific loss-of-function galectin-1 mutants will be invaluable. Unsurprisingly, in view of this background, the interpretation of the actions of galectin-1 in developmental situations, both normal and neoplastic, is often very complex. Published in 2004.  相似文献   

2.
The galectins are a family of animal lectins that possess similar carbohydrate binding specificities and conserved consensus sequences. The biological properties of mammalian galectins include the regulation of inflammation, cell adhesion, cell proliferation and cell death. Evidence suggests that the biological activities of the galectins are related to their multivalent binding properties since most galectins possess two carbohydrate recognition domains and are therefore bivalent. For example, galectin-1, which is dimeric, binds and cross-links specific glycoprotein counter-receptors on the surface of human T-cells leading to apoptosis [J. Immunol. 163 (1999) 3801]. Different galectin-1 counter-receptors associated with specific phosphatase or kinase activities formed separate clusters on the surface of the cells as a result of the lectin binding to the carbohydrate chains of the respective glycoproteins. Importantly, monovalent galectin-1 is inactive in this system. This indicates that the separation and organization of signaling molecules that result from galectin-1 binding is involved in the apoptotic signal. The separation of specific glycoprotein receptors induced by galectin-1 binding was modeled on the basis of molecular and structural studies of the binding of lectins to multivalent carbohydrates resulting in the formation of specific two- and three-dimensional cross-linked lattices [Biochemistry 36 (1997) 15073]. In this article, the binding and cross-linking properties of galectin-1 and other lectins are reviewed as a model for the biological signal transduction properties of the galectin family of animal lectins.  相似文献   

3.
Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein?Cprotein and protein?Ccarbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte?Cmacrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1??, IL-6, IL-8, IL-10, IL-12p70 and TNF-?? production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.  相似文献   

4.
5.
Galectin-3, a β-galactoside-binding protein, has been shown to be involved in multiple biological processes through interaction with its complementary glycoconjugates. Here we provide the first evidence of galectin-3 as a mitogen. Incubation of quiescent cultures of normal human lung fibroblast IMR-90 cells with recombinant galectin-3 (rgalectin-3) stimulated DNA synthesis as well as cell proliferation in a dose-dependent manner. This mitogenic activity was dependent on the lectin property of galectin-3, as it could be significantly inhibited by lactose, a disaccharide competitive for carbohydrate-binding by galectin-3. Chemical cross-linking and affinity-purification experiments identified binding of rgalectin-3 to cell surface glycoproteins, which were not recognized by antibodies directed against lysosome-associated membrane proteins (LAMPs), putative cellular ligands for galectin-3. Moreover, pulse–chase analysis revealed no secretion of galectin-3 by IMR-90 cells. These results indicate that galectin-3 is a mitogen capable of stimulating fibroblast cell proliferation in a paracrine fashion through interaction with cell surface glycoconjugates different from LAMPs and suggest a possible involvement of galectin-3 in tissue remodeling.  相似文献   

6.
Ras proteins activate diverse effector molecules. Depending on the cellular context, Ras activation may have different biological consequences: induction of cell proliferation, senescence, survival, or death. Augmentation and selective activation of particular effector molecules may underlie various Ras actions. In fact, Ras effector-loop mutants interacting with distinctive effectors provide evidence for such selectivity. Interactions of active Ras with escort proteins, such as galectin-1, could also direct Ras selectivity. Here we show that in comparison with Ras transfectants, H-Ras/galectin-1 or K-Ras4B/galectin-1 co-transfectants exhibit enhanced and prolonged epidermal growth factor (EGF)-stimulated increases in Ras-GTP, Raf-1 activity, and active extracellular signal-regulated kinase. Galectin-1 antisense RNA inhibited these EGF responses. Conversely, Ras and galectin-1 co-transfection inhibited the EGF-stimulated increase in phosphoinositide 3-kinase (PI3K) activity. Galectin-1 transfection also inhibited Ras(G12V)-induced PI3K but not Raf-1 activity. Galectin-1 co-immunoprecipitated with Ras(G12V) or with Ras(G12V/T35S) that activate Raf-1 but not with Ras(G12V/Y40C) that activates PI3K. Thus, galectin-1 binds active Ras and diverts its signal to Raf-1 at the expense of PI3K. This demonstrates a novel mechanism controlling the duration and selectivity of the Ras signal. Ras gains selectivity when it is associated with galectin-1, mimicking the selectivity of Ras(T35S), which activates Raf-1 but not PI3K.  相似文献   

7.
The galectin family of lectins regulates multiple biologic functions, such as development, inflammation, immunity, and cancer. One common function of several galectins is the ability to trigger T cell death. However, differences among the death pathways triggered by various galectins with regard to glycoprotein receptors, intracellular death pathways, and target cell specificity are not well understood. Specifically, galectin-9 and galectin-1 both kill thymocytes, peripheral T cells, and T cell lines; however, we have found that galectin-9 and galectin-1 require different glycan ligands and glycoprotein receptors to trigger T cell death. The two galectins also utilize different intracellular death pathways, as galectin-9, but not galectin-1, T cell death was blocked by intracellular Bcl-2, whereas galectin-1, but not galectin-9, T cell death was blocked by intracellular galectin-3. Target cell susceptibility also differed between the two galectins, as galectin-9 and galectin-1 killed different subsets of murine thymocytes. To define structural features responsible for distinct activities of the tandem repeat galectin-9 and dimeric galectin-1, we created a series of bivalent constructs with galectin-9 and galectin-1 carbohydrate recognition domains connected by different peptide linkers. We found that the N-terminal carbohydrate recognition domain and linker peptide contributed to the potency of these constructs. However, we found that the C-terminal carbohydrate recognition domain was the primary determinant of receptor recognition, death pathway signaling, and target cell susceptibility. Thus, carbohydrate recognition domain specificity, presentation, and valency make distinct contributions to the specific effects of different galectins in initiating T cell death.  相似文献   

8.
Galectin-3 is a β-galactoside binding lectin with roles in diverse processes including proliferation, apoptosis, inflammation and fibrosis which are dependent on different domains of the molecule and subcellular distribution. Although galectin-3 is known to be upregulated in acute kidney injury, the relative importance of its different domains and functions are poorly understood in the underlying pathogenesis. Therefore we experimentally modulated galectin-3 in folic acid (FA)-induced acute kidney injury utilising modified citrus pectin (MCP), a derivative of pectin which can bind to the galectin-3 carbohydrate recognition domain thereby predominantly antagonising functions linked to this role. Mice were pre-treated with normal or 1% MCP-supplemented drinking water one week before FA injection. During the initial injury phase, all FA-treated mice lost weight whilst their kidneys enlarged secondary to the renal insult; these gross changes were significantly lessened in the MCP group but this was not associated with significant changes in galectin-3 expression. At a histological level, MCP clearly reduced renal cell proliferation but did not affect apoptosis. Later, during the recovery phase at two weeks, MCP-treated mice demonstrated reduced galectin-3 in association with decreased renal fibrosis, macrophages, pro-inflammatory cytokine expression and apoptosis. Other renal galectins, galectin-1 and -9, were unchanged. Our data indicates that MCP is protective in experimental nephropathy with modulation of early proliferation and later galectin-3 expression, apoptosis and fibrosis. This raises the possibility that MCP may be a novel strategy to reduce renal injury in the long term, perhaps via carbohydrate binding-related functions of galectin-3.  相似文献   

9.
10.
11.
To isolate cDNAs for molecules involved in cell adhesion to the extracellular matrix, expression cloning with non-adherent colon cancer Colo201 cells was carried out. Four positive clones were isolated and, when sequenced, one was found to be galectin-1, a beta-galactoside-binding protein. When cultured on fibronectin-, laminin-, and collagen-coated and non-coated dishes, the adherent galectin-1 cDNA-transfected Colo201 cells increased and spread somewhat. Immunofluorescence staining revealed that galectin-1 was expressed inside and outside of Colo201 cells. The adhesion was dependent on the carbohydrate-recognition domain of galectin-1 since lactose inhibited the adhesion and exogenously-added galectin-1 caused the adhesion. PD58059, an inhibitor of mitogen-activated protein kinase, or LY294002, a phosphoinositide 3-OH kinase inhibitor, decreased the adhesion. Furthermore, the expression of galectin-1 in Colo201 cells induced apoptotic cell death, while exogenously-added galectin-1 did not cause apoptosis. These results indicate that galectin-1 plays a role in both cell-matrix interactions and the inhibition of Colo201 cell proliferation, and suggest that galectin-1 expressed in cells could be associated with apoptosis.  相似文献   

12.
Galectin-3, a member of the galectin family of carbohydrate binding proteins, is widely expressed, particularly in cells involved in the immune response. Galectin-3 has also been indicated to play a role in various biological activities ranging from cell repression to cell activation and adhesion and has, thus, been recognized as an immunomodulator. Whereas those activities are likely to be associated with ligand cross-linking by this lectin, galectin-3, unlike other members of the galectin family, exists as a monomer. It has consequently been proposed that oligomerization of the N-terminal domains of galectin-3 molecules, after ligand binding by the C-terminal domain, is responsible for this cross-linking. The oligomerization status of galectin-3 could, thus, control the majority of its extracellular activities. However, little is known about the actual mode of action through which galectin-3 exerts its function. In this report we present data suggesting that oligomerization of galectin-3 molecules occurs on cell surfaces with physiological concentrations of the lectin. Using galectin-3 labeled at the C terminus with Alexa 488 or Alexa 555, the oligomerization between galectin-3 molecules on cell surfaces was detected using fluorescence resonance energy transfer. We observed this fluorescence resonance energy transfer signal in different biological settings representing the different modes of action of galectin-3 that we previously proposed; that is, ligand crosslinking leading to cell activation, cell-cell interaction/adhesion, and lattice formation. Furthermore, our data suggest that galectin-3 lattices are robust and could, thus, be involved, as previously proposed, in the restriction of receptor clustering.  相似文献   

13.
Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway.  相似文献   

14.
15.
The specific recognition of carbohydrates by lectins plays a major role in many cellular processes. Galectin-1 belongs to a family of 15 structurally related β-galactoside binding proteins that are able to control a variety of cellular events, including cell cycle regulation, adhesion, proliferation, and apoptosis. The three-dimensional structure of galectin-1 has been solved by x-ray crystallography in the free form and in complex with various carbohydrate ligands. In this work, we used a combination of two-dimensional NMR titration experiments and molecular-dynamics simulations with explicit solvent to study the mode of interaction between human galectin-1 and five galactose-containing ligands. Isothermal titration calorimetry measurements were performed to determine their affinities for galectin-1. The contribution of the different hexopyranose units in the protein-carbohydrate interaction was given particular consideration. Although the galactose moiety of each oligosaccharide is necessary for binding, it is not sufficient by itself. The nature of both the reducing sugar in the disaccharide and the interglycosidic linkage play essential roles in the binding to human galectin-1.  相似文献   

16.
Presentation of galectin-1 by extracellular matrix triggers T cell death   总被引:5,自引:0,他引:5  
Apoptotic elimination of T cells at sites of inflammation or infiltration into tumors limits an effective immune response. T cell apoptosis can be initiated by a variety of triggers, including galectin-1, a soluble, secreted lectin that binds to oligosaccharide ligands on cell surface glycoproteins, or to oligosaccharide ligands on extracellular matrix glycoproteins in tissue stroma. Although galectin-1 has no transmembrane domain and is secreted from cells that make it, it is not clear if galectin-1 functions as a soluble death trigger in vivo. We examined the ability of stromal cells secreting galectin-1 to kill T cells. Although the stromal cells synthesized abundant galectin-1, the majority of the galectin-1 remained bound to the cell surface, and stromal cell-associated galectin-1 killed bound T cells. In contrast, insufficient amounts of functional galectin-1 were released from the stromal cells into the media to kill T cells in the absence of contact with stromal cells. However, when stromal cells were grown on Matrigel, a mixture of extracellular matrix proteins, or on permeable membranes above Matrigel, secreted galectin-1 bound to Matrigel and killed T cells without stromal cell contact. Ten-fold less galectin-1 on Matrigel was sufficient to kill adherent T cells compared with soluble galectin-1. These results demonstrate that galectin-1 in extracellular matrix is able to directly kill susceptible T cells. Because increased galectin-1 deposition in tumor stroma occurs with tumor progression in various types of cancer, galectin-1 in stroma may act locally in the apoptotic elimination of infiltrating T cells during an immune response.  相似文献   

17.
Dendritic cells (DCs) are potent mediators of the immune response, and can be activated by exogenous pathogen components. Galectin-1 is a member of the conserved beta-galactoside-binding lectin family that binds galactoside residues on cell surface glycoconjugates. Galectin-1 is known to play a role in immune regulation via action on multiple immune cells. However, its effects on human DCs are unknown. In this study, we show that galectin-1 induces a phenotypic and functional maturation in human monocyte-derived DCs (MDDCs) similar to but distinct from the activity of the exogenous pathogen stimuli, LPS. Immature human MDDCs exposed to galectin-1 up-regulated cell surface markers characteristic of DC maturation (CD40, CD83, CD86, and HLA-DR), secreted high levels of IL-6 and TNF-alpha, stimulated T cell proliferation, and showed reduced endocytic capacity, similar to LPS-matured MDDCs. However, unlike LPS-matured DCs, galectin-1-treated MDDCs did not produce the Th1-polarizing cytokine IL-12. Microarray analysis revealed that in addition to modulating many of the same DC maturation genes as LPS, galectin-1 also uniquely up-regulated a significant subset of genes related to cell migration through the extracellular matrix (ECM). Indeed, compared with LPS, galectin-1-treated human MDDCs exhibited significantly better chemotactic migration through Matrigel, an in vitro ECM model. Our findings show that galectin-1 is a novel endogenous activator of human MDDCs that up-regulates a significant subset of genes distinct from those regulated by a model exogenous stimulus (LPS). One unique effect of galectin-1 is to increase DC migration through the ECM, suggesting that galectin-1 may be an important component in initiating an immune response.  相似文献   

18.
We found that the expression of galectin-1 and galectin-3 was significantly up-regulated in hepatic stellate cells (HSCs) both in the course of their transdifferentiation into myofibroblasts, a process of "self-activation," and in the fibrosis of liver tissues. Recombinant galectin-1 and galectin-3 stimulated the proliferation of cultured HSCs via the MEK1/2-ERK1/2 signaling pathway. However, galectin-3 utilized protein kinases C and A to induce this process, whereas galectin-1 did not. We also found that thiodigalactoside, a potent inhibitor of beta-galactoside binding, attenuated the effects of both galectins. In addition, galectin-1, but not galectin-3, promoted the migration of HSCs. Thus, it appears that galectin-1 and galectin-3, generated by activated HSCs, could participate in beta-galactoside binding and induce different intracellular signaling pathways leading to the proliferation of HSCs.  相似文献   

19.
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is strongly induced during the maturation of dendritic cells (DC). Most known functions of Bam32 are related to the signaling of the B cell receptor for Ag. Because DC do not express receptors specific for Ags, we aim at characterizing the role of Bam32 in human monocyte-derived DC in this study. Our results show that binding of allogeneic T cells to mature DC causes accumulation of Bam32 on the contact sites and that this translocation is mimicked by Ab-mediated engagement of MHC class I. Silencing of Bam32 in mature monocyte-derived DC results in an enhanced proliferation of CD8(+) T cells in an Ag-specific T cell proliferation assay. Further studies identify galectin-1 as an intracellular binding partner of Bam32. Regulating immune responses via regulatory T cell (Treg) modulation is one of the many immunological activities attributed to galectin-1. Therefore, we assayed mixed leukocyte reactions for Treg expansion and found fewer Treg in reactions stimulated with DC silenced for Bam32 compared to reactions stimulated with DC treated with a nontarget control. Based on our findings, we propose a role for Bam32 in the signaling of MHC class I molecules in professional Ag-presenting DC for the regulation of CD8(+) T cell activation. It is distinct from that of MHC class I recognized by CD8(+) T cells leading to target [corrected] cell death. Thus, our data pinpoint a novel level of T cell regulation that may be of biological relevance.  相似文献   

20.
Galectin-1, a beta-galactoside-binding dimeric lectin, is involved in adhesion, migration, and proliferation of vascular smooth muscle cells (SMC), the key steps in the development of atherosclerosis and restenosis. Here we investigated the molecular basis of the interactions between galectin-1 and SMCs. Galectin-1 modulated SMC attachment in a dose- and beta-galactoside-dependent manner. Direct binding of galectin-1 to beta1 integrin was detected by the immune precipitation of beta1 integrin after chemical cross-linking of 125I-labelled galectin-1 to the cell surface proteins. Galectin-1 transiently increased availability of beta1 integrins on the cell surface to antibodies against beta1 integrin. Incubation of SMCs with galectin-1 transiently increased the amount of the active form of beta1 integrin and tyrosine phosphorylation of two cytoskeleton-associated proteins; one of them coincided with focal adhesion kinase (FAK). Galectin-1 is likely to affect SMC adhesion by interacting with beta1 integrin on the cell surface of SMCs and inducing outside-in signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号