共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution structures and model membrane interactions of lactoferrampin, an antimicrobial peptide derived from bovine lactoferrin 总被引:2,自引:0,他引:2
Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer. 相似文献
2.
Evan F. Haney 《生物化学与生物物理学报:生物膜》2007,1768(10):2355-2364
Bovine lactoferrampin (LFampinB) has been identified as a novel antimicrobial peptide, which is derived from the N-terminal lobe of bovine lactoferrin. In this study, the solution structure of LFampinB bound to negatively charged sodium dodecyl sulphate micelles and zwitterionic dodecyl phosphocholine micelles was determined using 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. The interaction between LFampinB and multilamellar phospholipid vesicles, containing choline and glycerol head groups, was examined using differential scanning calorimetry (DSC). In addition, the interaction between the N-terminal tryptophan residue and model membranes of varying composition was analyzed by fluorescence spectroscopy. LFampinB adopts an amphipathic alpha-helical conformation across the first 11 residues of the peptide but remains relatively unstructured at the C-terminus. The hydrophobic surface of the amphipathic helix is bordered by the side chains of Trp1 and Phe11, and is seen in both micelle-bound structures. The fluorescence results suggest that Trp1 inserts into the membrane at the lipid/water interface. The phenyl side chain of Phe11 is oriented in the same direction as the indole ring of Trp1, allowing these two residues to serve as anchors for the lipid bilayer. The DSC results also indicate that LFampinB interacts with glycerol head groups in multilamellar vesicles but has little effect on acyl chain packing. Our results support a two step model of antimicrobial activity where the initial attraction of LFampinB is mediated by the cluster of positive charges on the C-terminus followed by the formation of the N-terminal helix which binds to the surface of the bacterial lipid bilayer. 相似文献
3.
Increased Staphylococcus-killing activity of an antimicrobial peptide,lactoferricin B,with minocycline and monoacylglycerol 总被引:1,自引:0,他引:1
Wakabayashi H Teraguchi S Tamura Y 《Bioscience, biotechnology, and biochemistry》2002,66(10):2161-2167
This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations. 相似文献
4.
Samuelsen O Haukland HH Jenssen H Krämer M Sandvik K Ulvatne H Vorland LH 《FEBS letters》2005,579(16):3421-3426
This study was designed to investigate inducible intrinsic resistance against lactoferricin B in Staphylococcus aureus. Serial passage of seven S. aureus strains in medium with increasing concentrations of peptide resulted in an induced resistance at various levels in all strains. The induced resistance was unstable and decreased relatively rapidly during passages in peptide free medium but the minimum inhibitory concentration remained elevated after thirty passages. Cross-resistance to penicillin G and low-level cross-resistance to the antimicrobial peptides indolicidin and Ala(8,13,18)-magainin-II amide [corrected] was observed. No cross-resistance was observed to the human cathelicidin LL-37. In conclusion, this study shows that S. aureus has intrinsic resistance mechanisms against antimicrobial peptides that can be induced upon exposure, and that this may confer low-level cross-resistance to other antimicrobial peptides. 相似文献
5.
《Peptides》2016
We have recently characterized bicarinalin as the most abundant peptide from the venom of the ant Tetramorium bicarinatum. This antimicrobial peptide is active against Staphylococcus and Enterobacteriaceae. To further investigate the antimicrobial properties of this cationic and cysteine-free peptide, we have studied its antibacterial, antifungal and antiparasitic activities on a large array of microorganisms. Bicarinalin was active against fifteen microorganisms with minimal inhibitory concentrations ranging from 2 and 25 μmol L−1. Cronobacter sakazakii, Salmonella enterica, Candida albicans, Aspergilus niger and Saccharomyces cerevisiae were particularly susceptible to this novel antimicrobial peptide. Resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa and C. albicans were as susceptible as the canonical strains. Interestingly, bicarinalin was also active against the parasite Leishmania infantum with a minimal inhibitory concentrations of 2 μmol L−1. The bicarinalin pre-propeptide cDNA sequence has been determined using a combination of degenerated primers with RACE PCR strategy. Interestingly, the N-terminal domain of bicarinalin pre-propeptide exhibited sequence similarity with the pilosulin antimicrobial peptide family previously described in the Myrmecia venoms. Moreover, using SYTOX green uptake assay, we showed that, for all the tested microorganisms, bicarinalin acted through a membrane permeabilization mechanism. Two dimensional-NMR experiments showed that bicarinalin displayed a 10 residue-long α-helical structure flanked by two N- and C-terminal disordered regions. This partially amphipathic helix may explain the membrane permeabilization mechanism of bicarinalin observed in this study. Finally, therapeutic value of bicarinalin was highlighted by its low cytotoxicity against human lymphocytes at bactericidal concentrations and its long half-life in human serum which was around 15 h. 相似文献
6.
Pleurocidin is an antimicrobial peptide that was isolated from the mucus membranes of winter flounder (Pseudopleuronectes americanus) and contributes to the initial stages of defense against bacterial infection. From NMR structural studies with the uniformly (15)N-labeled peptide, a structure of pleurocidin was determined to be in a random coil conformation in aqueous solution whereas it assumes an alpha-helical structure in TFE and in dodecylphosphocholine (DPC) micelles. From (15)N relaxation studies, the helix is a rigid structure in the membrane-mimicking environment. Strong NOESY cross-peaks from the pleurocidin to the aliphatic chain on DPC confirm that pleurocidin is contained within the DPC micelle and not associated with the surface of the micelle. From diffusion studies it was determined that each micelle contains at least two pleurocidin molecules. 相似文献
7.
Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli 总被引:7,自引:0,他引:7
Kim HK Chun DS Kim JS Yun CH Lee JH Hong SK Kang DK 《Applied microbiology and biotechnology》2006,72(2):330-338
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide–lactoferricin fusion gene. The monomeric acidic peptide–lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-β-d-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does. 相似文献
8.
Bolscher J Nazmi K van Marle J van 't Hof W Veerman E 《Biochimie et biologie cellulaire》2012,90(3):378-388
Bovine lactoferrin harbors 2 antimicrobial sequences (LFcin and LFampin), situated in close proximity in the N1-domain. To mimic their semi parallel configuration we have synthesized a chimeric peptide (LFchimera) in which these sequences are linked in a head-to-head fashion to the α- and ε-amino group, respectively, of a single lysine. In line with previously described bactericidal effects, this peptide was also a stronger candidacidal agent than the antimicrobial peptides LFcin17-30 and LFampin265-284, or a combination of these 2. Conditions that strongly reduced the candidacidal activities of LFcin17-30 and LFampin265-284, such as high ionic strength and energy depletion, had little influence on the activity of LFchimera. Freeze-fracture electron microscopy showed that LFchimera severely affected the membrane morphology, resulting in disintegration of the membrane bilayer and in an efflux of small and high molecular weight molecules such as ATP and proteins. The differential effects displayed by the chimeric peptide and a mixture of its constituent peptides clearly demonstrate the synergistic effect of linking these peptides in a fashion that allows a similar spatial arrangement as in the parent protein, suggesting that in bovine lactoferrrin the corresponding fragments act in concert in its candidacidal activity. 相似文献
9.
Thorsell AG Persson C Voevodskaya N Busam RD Hammarström M Gräslund S Gräslund A Hallberg BM 《The Journal of biological chemistry》2008,283(22):15209-15216
Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, we present the crystal structure of human MIOX in complex with myo-inosose-1 bound in a terminal mode to the MIOX diiron cluster site. Furthermore, from biochemical and biophysical results from N-terminal deletion mutagenesis we show that the N terminus is important, through coordination of a set of loops covering the active site, in shielding the active site during catalysis. EPR spectroscopy of the unliganded enzyme displays a two-component spectrum that we can relate to an open and a closed active site conformation. Furthermore, based on site-directed mutagenesis in combination with biochemical and biophysical data, we propose a novel role for Lys(127) in governing access to the diiron cluster. 相似文献
10.
11.
Bolscher JG Adão R Nazmi K van den Keybus PA van 't Hof W Nieuw Amerongen AV Bastos M Veerman EC 《Biochimie》2009,91(1):123-132
The innate immunity factor lactoferrin harbours two antimicrobial moieties, lactoferricin and lactoferrampin, situated in close proximity in the N1 domain of the molecule. Most likely they cooperate in many of the beneficial activities of lactoferrin. To investigate whether chimerization of both peptides forms a functional unit we designed a chimerical structure containing lactoferricin amino acids 17-30 and lactoferrampin amino acids 265-284. The bactericidal activity of this LFchimera was found to be drastically stronger than that of the constituent peptides, as was demonstrated by the need for lower dose, shorter incubation time and less ionic strength dependency. Likewise, strongly enhanced interaction with negatively charged model membranes was found for the LFchimera relative to the constituent peptides. Thus, chimerization of the two antimicrobial peptides resembling their structural orientation in the native molecule strikingly improves their biological activity. 相似文献
12.
《生物化学与生物物理学报:生物膜》2019,1861(10):182984
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes. 相似文献
13.
华重楼内生菌抗菌肽的分离纯化及其特性 总被引:5,自引:0,他引:5
摘要:【目的】华重楼内生菌PCE45具有较强的抗菌活性,本文将对PCE45产生的抗菌物质进行分离纯化和性质分析报道。【方法】PCE45发酵液经硫酸铵盐析、丙酮沉淀、SephadexG75柱、DE52纤维素柱和SephadexG25凝胶柱纯化分离得到抗菌肽PCP-1。【结果】稳定性测试表明该抗菌肽对蛋白酶不敏感,对高温、强酸、强碱有较好的耐受性,可造成稻瘟病菌菌丝畸形并抑制孢子萌发。抑菌谱表明该抗菌肽对玉米弯胞病菌等真菌和大肠杆菌等细菌有较强的抑菌效果。质谱测得其分子量为1058.3D。氨基酸组成分析表明该 相似文献
14.
Liu F Xiong J Kumar S Yang C Ge S Li S Xia N Swaminathan K 《Journal of structural biology》2011,175(1):31-38
Dodecins (assembly of twelve monomers) are the smallest known flavoprotein with only 65-73 amino acids and are involved in binding and storage of flavins in archaea. Here we report the crystal structure of Rv1498A, a Mycobacterium tuberculosis dodecin. This bacterial dodecin structure is similar to that of other reported dodecins. Each monomer has a 3 stranded β-sheet and an α-helix perpendicular to it. This protein has polyextreme (halophilic and thermophilic) properties. Interestingly, positively and negatively charged residues aggregate separately and do not seem to contribute to thermophilic and halophilic stability. We have examined the interactions that stabilize the Rv1498A dodecamer by preparing selected point mutants that break salt bridges and hydrophobic contacts, thereby leading to collapse of the assembly. 相似文献
15.
Discovery of antimicrobial peptides (AMP) is to a large extent based on screening of fractions of natural samples in bacterial growth inhibition assays. However, the use of bacteria is not limited to screening for antimicrobial substances. In later steps, bioengineered "bugs" can be applied to both production and characterization of AMPs. Here we describe the idea to use genetically modified Escherichia coli strains for both these purposes. This approach allowed us to investigate SpStrongylocins 1 and 2 from the purple sea urchin Strongylocentrotus purpuratus only based on sequence information from a cDNA library and without previous direct isolation or chemical synthesis of these peptides. The recombinant peptides are proved active against all bacterial strains tested. An assay based on a recombinant E. coli sensor strain expressing insect luciferase, revealed that SpStrongylocins are not interfering with membrane integrity and are therefore likely to have intracellular targets. 相似文献
16.
An antimicrobial peptide, ostricacin-1, has been purified and characterized from ostrich leukocytes. The peptide has a mass of 4011 and contained 36 residues, including 3 intramolecular cystine disulfide bonds. Ostricacin-1 has a primary sequence homology to the -defensin family and was active at 6.7 g ml–1 against E. coli and Staphylocccus aureus
in vitro. 相似文献
17.
Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin,HP and plectasin on Staphylococcus aureus 总被引:1,自引:0,他引:1
Di Xi Xiumin Wang Da Teng Ruoyu Mao Yong Zhang Xiaojie Wang Jianhua Wang 《Biometals》2014,27(5):957-968
The tri-hybrid peptide-LHP7 has the potent activity against Gram-positive and Gram-negative as well as fungi, but its mechanism of action has remained elusive. The effluences of LHP7 on the Staphylococcus aureus cell membrane and targets of intracellular action were investigated. LHP7 exhibited an inhibitory effect on the S. aureus growth, similar to those achieved by plectasin, vancomycin and gramicidin. The membrane integrity studies confirmed that LHP7 disrupted the cell membrane, indicating a membrane permeabilizing killing action. A marginal decline in the intensity fluorescence indicated no significant depolarization of the membrane potential following LHP7 treatment. Furthermore, electron microscopy showed that cell shrinkage, cell wall thickening, cellular content leakage, and cell disruption were observed in the cells treated with LHP7. A gel retardation assay showed that LHP7 bound to the genomic DNA of S. aureus or plasmid DNA at a mass ratio of 2.5–10 (peptide/DNA). Circular dichroism indicated that LHP7 inserted into the groove of DNA. The cell cycle analysis showed that after the treatment with LHP7 for 30 and 60 min, the proportion of cells in I-phase increased from 8.71 to 12.09 % and from 8.71 to 15.68 %, indicating that LHP7 induced arrest of cells in the I-phase. These results would conduce to elucidate its underlying antibacterial mechanism. 相似文献
18.
Corsini G Karahanian E Tello M Fernandez K Rivero D Saavedra JM Ferrer A 《FEMS microbiology letters》2010,312(2):119-125
Microcins are low-molecular-weight proteins secreted by certain bacteria that act by limiting the growth of other bacteria that share the same ecological niche. In the present work, the previous microcin 24 system was resequenced.We detected three nucleotide differences in the microcin-coding gene that partially change the amino acid sequence. According to the present microcin nomenclature, we renamed the five genes constituting this microcin system (mcnRINAB), which are arranged in an operon-like structure: mcnR codes for a putative histone-like nucleoid protein regulator; mcnI codes for the immunity protein; mcnN encodes microcin N; and mcnA and mcnB correspond to an ATP-binding cassette transporter system. Purified microcin N has a molecular weight of 7274.23 Da, as determined by MS. This peptide was stable up to 100°C, resistant to treatment with lipase, lysozyme, trypsin, and chymotrypsin, and susceptible to degradation by proteinase K. 相似文献
19.
《生物化学与生物物理学报:生物膜》2019,1861(7):1355-1364
The naturally occurring peptide indolicidin from bovine neutrophils exhibits strong biological activity against a broad spectrum of microorganisms. This is believed to arise from selective interactions with the negatively charged cytoplasmic lipid membrane found in bacteria. We have investigated the peptide interaction with supported lipid model membranes using a combination of complementary surface sensitive techniques: neutron reflectometry (NR), atomic force microscopy (AFM), and quartz crystal microbalance with dissipation monitoring (QCM-D). The data are compared with small-angle X-ray scattering (SAXS) results obtained with lipid vesicle/peptide solutions. The peptide membrane interaction is shown to be significantly concentration dependent. At low concentrations, the peptide inserts at the outer leaflet in the interface between the headgroup and tail core. Insertion of the peptide results in a slight decrease in the lipid packing order of the bilayer, although not sufficient to cause membrane thinning. By increasing the indolicidin concentration well above the physiologically relevant conditions, a deeper penetration of the peptide into the bilayer and subsequent lipid removal take place, resulting in a slight membrane thinning. The results suggest that indolicidin induces lipid removal and that mixed indolicidin-lipid patches form on top of the supported lipid bilayers. Based on the work presented using model membranes, indolicidin seems to act through the interfacial activity model rather than through the formation of stable pores. 相似文献
20.
A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions. 相似文献