首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring of transgenic plants in the field is important, but risk assessment has entailed laborious use of invisible marker genes. Here, we assessed three easily visible marker transgenes--green fluorescent protein (GFP), R, and Nicotiana tabacum homeobox (NTH) 15 genes--for their potential use as marker genes for monitoring genetically modified plants. Transgenic Arabidopsis thaliana plants for each of these genes were visibly distinguished from wild-type plants. We determined the germination rate, 3-week fresh weight, time to first flowering, and seed weight of the transgenic plants to evaluate whether the expression of these marker genes affected the growth of the host. Introduction of GFP gene had no effect on the evaluated parameters, and we then used the GFP gene as a marker to assess the outcrossing frequency between transgenic and two Arabidopsis species. Our results showed that the hybridization frequency between transgenic plants and Arabidopsis thaliana was 0.24%, and between transformants and Arabidopsis lyrata it was 2.6% under experimental condition. Out-crossing frequency was decreased by extending the distance between two kinds of plants. Thus, the GFP gene is a useful marker for assessing the whereabouts of transgenes/transformants in the field. We also demonstrated that the GFP gene is possibly applicable as a selection marker in the process of generation of transgenic plants.  相似文献   

2.
Selectable markers enable transgenic plants or cells to be identified after transformation. They can be divided into positive and negative markers conferring a selective advantage or disadvantage, respectively. We present a marker gene, dao1, encoding D-amino acid oxidase (DAAO, EC 1.4.3.3) that can be used for either positive or negative selection, depending on the substrate. DAAO catalyzes the oxidative deamination of a range of D-amino acids. Selection is based on differences in the toxicity of different D-amino acids and their metabolites to plants. Thus, D-alanine and D-serine are toxic to plants, but are metabolized by DAAO into nontoxic products, whereas D-isoleucine and D-valine have low toxicity, but are metabolized by DAAO into the toxic keto acids 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive and negative selection is possible with the same marker gene. The marker has been successfully established in Arabidopsis thaliana, and proven to be versatile, rapidly yielding unambiguous results, and allowing selection immediately after germination.  相似文献   

3.
【目的】D-乳酸脱氢酶是催化丙酮酸合成D-乳酸的关键酶。由于其不耐热,从而限制了D-乳酸高温发酵菌株的构建。本文从詹氏乳杆菌中克隆新型D-乳酸脱氢酶研究其酶学性质,为构建D-乳酸高温发酵菌株,进一步降低D-乳酸生产成本奠定基础。【方法】通过克隆詹氏乳杆菌的D-乳酸脱氢酶,将其进行体外表达,并与来自植物乳杆菌中的D-乳酸脱氢酶的最适温度、最适pH、动力学参数及热稳定性和热失活性相比较,研究詹氏乳杆菌D-乳酸脱氢酶的耐热性。【结果】詹氏乳杆菌的D-乳酸脱氢酶最适温度(45 °C)比植物乳杆菌中的D-乳酸脱氢酶的最适温度(30 °C)高很多,热失活的时间和温度均要比植物乳杆菌中D-乳酸脱氢酶高很多。同时其催化效率(kcat/Km)是植物乳杆菌D-乳酸脱氢酶的3倍左右。【结论】詹氏乳杆菌的D-乳酸脱氢酶具有更好的耐热性和更高的催化活力。  相似文献   

4.
G S Rule  E A Pratt  C C Chin  F Wold    C Ho 《Journal of bacteriology》1985,161(3):1059-1068
Recombinant DNA plasmids containing the gene for the membrane-bound D-lactate dehydrogenase (D-LDH) of Escherichia coli linked to the promoter PL from lambda were constructed. After induction, the levels of D-LDH were elevated 300-fold over that of the wild type and amounted to 35% of the total cellular protein. The nucleotide sequence of the D-LDH gene was determined and shown to agree with the amino acid composition and the amino-terminal sequence of the purified enzyme. Removal of the amino-terminal formyl-Met from D-LDH was not inhibited in cells which contained these high levels of D-LDH.  相似文献   

5.
The activities of NAD-independent D- and L-lactate dehydrogenases (D-LDH, L-LDH) were detected in Rhodopseudomonas palustris No. 7 grown photoanaerobically on lactate. One of these enzymes, D-LDH, was purified as an electrophoretically homogeneous protein (M(r), about 235,000; subunit M(r) about 57,000). The pI was 5.0. The optimum pH and temperature of the enzyme were pH 8.5 and 50 degrees C, respectively. The Km of the enzyme for D-lactate was 0.8 mM. The enzyme had narrow substrate specificity (D-lactate and DL-2-hydroxybutyrate). The enzymatic activity was competitively inhibited by oxalate (Ki, 0.12 mM). The enzyme contained a FAD cofactor. Cytochrome c(2) was purified from strain No. 7 as an electrophoretically homogeneous protein. Its pI was 9.4. Cytochrome c(2) was reduced by incubating with D-LDH and D-lactate.  相似文献   

6.
Luo K  Sun M  Deng W  Xu S 《Biotechnology letters》2008,30(7):1295-1302
To excise a selectable marker gene from transgenic plants, a new binary expression vector based on the 'genetically modified (GM)-gene-deletor' system was constructed. In this vector, the gene coding for FLP site-specific recombinase under the control of a heat shock-inducible promoter HSP18.2 from Arabidopsis thaliana and isopentenyltransferase gene (ipt), as a selectable marker gene under the control of the cauliflower mosaic virus 35S (CaMV 35S) promoter, were flanked by two loxP/FRT fusion sequences as recombination sites in direct orientation. Histochemical staining for GUS activity showed that, upon induction by heat shock, all exogenous DNA, including the selectable marker gene ipt, beta-glucuronidase (gusA) gene and the FLP recombinase gene, between two loxP/FRT sites was eliminated efficiently from primary transgenic tobacco plants. Molecular analysis further confirmed that excision of the marker gene (ipt) was heritable and stable. Our approach provides a reliable strategy for auto-excising a selectable marker gene from calli, shoots or other tissues of transgenic plants after transformation and producing marker-free transgenic plants.  相似文献   

7.

Background  

The L-lactate and D-lactate dehydrogenases, which are involved in the reduction of pyruvate to L(-)-lactate and D(+)-lactate, belong to evolutionarily unrelated enzyme families. The genes encoding L-LDH have been used as a model for gene duplication due to the multiple paralogs found in eubacteria, archaebacteria, and eukaryotes. Phylogenetic studies have suggested that several gene duplication events led to the main isozymes of this gene family in chordates, but little is known about the evolution of L-Ldh in invertebrates. While most invertebrates preferentially oxidize L-lactic acid, several species of mollusks, a few arthropods and polychaetes were found to have exclusively D-LDH enzymatic activity. Therefore, it has been suggested that L-LDH and D-LDH are mutually exclusive. However, recent characterization of putative mammalian D-LDH with significant similarity to yeast proteins showing D-LDH activity suggests that at least mammals have the two naturally occurring forms of LDH specific to L- and D-lactate. This study describes the phylogenetic relationships of invertebrate L-LDH and D-LDH with special emphasis on crustaceans, and discusses gene duplication events during the evolution of L-Ldh.  相似文献   

8.
9.
Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of D-lactate dehydrogenase (D-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited D-lactate:phenazine methosulfate reductase activity and oxidized D-lactate into pyruvate by converting the heme iron from Fe(3+) to Fe(2+) in a FAD-dependent manner, indicating electron transfer from D-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that D-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding D-LDH, we propose that the novel D-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe(3+)/Fe(2+) redox states.  相似文献   

10.
Conventional Agrobacterium-mediated transformation methods rely on complex and genotype-specific tissue culture media for selection, proliferation, and regeneration of genetically modified cells. Resulting transgenic plants may not only contain selectable marker genes but also carry fragments of the vector backbone. Here, we describe a new method for the production of transgenic plants that lack such foreign DNA. This method employs vectors containing the bacterial isopentenyltransferase (ipt) gene as backbone integration marker. Agrobacterium strains carrying the resulting ipt gene-containing "cytokinin" vectors were used to infect explants of various Solanaceous plant species as well as canola (Brassica napus). Upon transfer to hormone-free media, 1.8% to 9.9% of the infected explants produced shoots that contained a marker-free T-DNA while lacking the backbone integration marker. These frequencies often equal or exceed those for backbone-free conventional transformation.  相似文献   

11.
Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.  相似文献   

12.
利用FLP/frt重组系统产生无选择标记的转基因烟草植株   总被引:3,自引:0,他引:3  
在植物转基因植株产生过程中,对转化细胞进行抗性筛选是通用程序,转化细胞的抗性一般是抗生素抗性或除草剂抗性,将赋予转化细胞抗性的选择标记基因删除是提高转基因植物生物安全性的重要措施。来自于啤酒酵母的FLP/frt位点特异性重组系统可有效删除同向定点重组位点frt之间的基因。通过多步骤重组,建立了可在植物中广泛应用的FLP/frt位点特异性重组系统。该系统包括含有frt位点的植物表达载体pCAMBIA1300-betA-frt-als-frt和含有由热诱导启动子hsp启动的FLP重组酶基因的植物表达载体pCAMBIA1300-hsp-FLP-hpt。利用二次转化的方式将二者先后转入烟草植株,热激处理后,热诱导型启动子hsp调控的重组酶FLP基因的表达催化位于选择标记基因als两侧同向frt位点间的重组反应,有效地删除了选择标记基因als。41%的经热激处理的二次转化植株发生了选择标记基因的删除,表明该系统在获得无选择标记基因的转基因植株中有很好的应用价值。  相似文献   

13.
为培育去除选择标记基因的耐旱转基因植物,同时利用Cre/Lox和FLP/frt系统,构建一个能够高效删除标记基因的Bhlea2基因植物表达载体.拟南芥rd29A启动子是在低温、干旱、高盐胁迫下的快速应答启动子,玉米ubiquitin启动子可有效驱动外源基因的转录,拟南芥pAB5启动子是花粉及胚胎等发育早期特异表达的启动子,利用上述启动子构建了表达Bhlea2基因并能够删除标记基因的植物表达载体.该表达载体包括重组酶表达元件pAB5-FLP、Bhlea2抗旱基因表达元件rd29A-Bhlea2和bar标记基因表达元件ubiquitin-bar.  相似文献   

14.
Activity of D-lactate dehydrogenase (D-LDH) was shown not only in cell extracts from Megasphaera elsdenii grown on DL-lactate, but also in cell extracts from glucose-grown cells, although glucose-grown cells contained approximately half as much D-LDH as DL-lactate-grown cells. This indicates that the D-LDH of M. elsdenii is a constitutive enzyme. However, lactate racemase (LR) activity was present in DL-lactate-grown cells, but was not detected in glucose-grown cells, suggesting that LR is induced by lactate. Acetate, propionate, and butyrate were produced similarly from both D- and L-lactate, indicating that LR can be induced by both D- and L-lactate. These results suggest that the primary reason for the inability of M. elsdenii to produce propionate from glucose is that cells fermenting glucose do not synthesize LR, which is induced by lactate.  相似文献   

15.
Antibiotic and herbicide resistance genes are currently the most frequently used selectable marker genes for plant research and crop development. However, the use of antibiotics and herbicides must be carefully controlled because the degree of susceptibility to these compounds varies widely among plant species and because they can also affect plant regeneration. Therefore, new selectable marker systems that are effective for a broad range of plant species are still needed. Here, we report a simple and inexpensive system based on providing transgenic plant cells the capacity to convert a nonmetabolizable compound (phosphite, Phi) into an essential nutrient for cell growth (phosphate) trough the expression of a bacterial gene encoding a phosphite oxidoreductase (PTXD). This system is effective for the selection of Arabidopsis transgenic plants by germinating T0 seeds directly on media supplemented with Phi and to select transgenic tobacco shoots from cocultivated leaf disc explants using nutrient media supplemented with Phi as both a source of phosphorus and selective agent. Because the ptxD/Phi system also allows the establishment of large‐scale screening systems under greenhouse conditions completely eliminating false transformation events, it should facilitate the development of novel plant transformation methods.  相似文献   

16.
LEA protein,late-embryogenesis-abundant protein,is importantin response to thesalt and drought stresses in plants.Here,weidentified a cDNA full length of LEA from soybean and found that LEA enhance the ability of anti-salinity in transgenic Arabidopsis thaliana.The expression of GmPM30 increases highly under salinity,cold or ABA treatment,and enhances by certain degree under drought stress.The germination rates,primary root lengths and survival rate of GmPM30 over-expression lines are obviously higher than that of the wild-type after suffering the salinity stress.Our studies displays that GmPM30-ox apparently enhances the tolerance to salinity in Arabidopsis thaliana.  相似文献   

17.
18.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

19.
Marker-free transgenic plants   总被引:16,自引:0,他引:16  
Selectable marker genes are widely used for the efficient transformation of crop plants. In most cases, selection is based on antibiotic or herbicide resistance. Due mainly to consumer concerns, a suite of strategies (site-specific recombination, homologous recombination, transposition and co-transformation) have been developed to eliminate the marker gene from the nuclear or chloroplast genome after selection. Current efforts concentrate on systems where marker genes are eliminated efficiently soon after transformation. Alternatively, transgenic plants are produced by the use of marker genes that do not rely on antibiotic or herbicide resistance but instead promote regeneration after transformation. Here, the merits and shortcomings of different approaches and possible directions for their future development are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号