首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type 1 and type 2 diabetes result from a deficit in insulin production and beta-cell mass. Methods to expand beta-cell mass are under intensive investigation for the treatment of type 1 and type 2 diabetes. We tested the hypothesis that cholecystokinin (CCK) can promote beta-cell proliferation. We treated isolated mouse and human islets with an adenovirus containing the CCK cDNA (AdCMV-CCK). We measured [(3)H]thymidine and BrdU incorporation into DNA and additionally, performed flow cytometry analysis to determine whether CCK overexpression stimulates beta-cell proliferation. We studied islet function by measuring glucose-stimulated insulin secretion and investigated the cell cycle regulation of proliferating beta-cells by quantitative RT-PCR and Western blot analysis. Overexpression of CCK stimulated [(3)H]thymidine incorporation into DNA 5.0-fold and 15.8-fold in mouse and human islets, respectively. AdCMV-CCK treatment also stimulated BrdU incorporation into DNA 10-fold and 21-fold in mouse and human beta-cells, respectively. Glucose-stimulated insulin secretion was unaffected by CCK expression. Analysis of cyclin and cdk mRNA and protein abundance revealed that CCK overexpression increased cyclin A, cyclin B, cyclin E, cdk1, and cdk2 with no change in cyclin D1, cyclin D2, cyclin D3, cdk4, or cdk6 in mouse and human islets. Additionally, AdCMV-CCK treatment of CCK receptor knockout and wild-type mice resulted in equal [(3)H]thymidine incorporation. CCK is a beta-cell proliferative factor that is effective in both mouse and human islets. CCK triggers beta-cell proliferation without disrupting islet function, up-regulates a distinct set of cell cycle regulators in islets, and signals independently of the CCK receptors.  相似文献   

3.
The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is an important regulator of lipid and glucose homeostasis and cellular differentiation. Studies of many cell types in vitro and in vivo have demonstrated that activation of PPAR gamma can reduce cellular proliferation. We show here that activation of PPAR gamma is sufficient to reduce the proliferation of cultured insulinoma cell lines. We created a model with mice in which the expression of the PPARG gene in beta cells was eliminated (beta gamma KO mice), and these mice were found to have significant islet hyperplasia on a chow diet. Interestingly, the normal expansion of beta-cell mass that occurs in control mice in response to high-fat feeding is markedly blunted in these animals. Despite this alteration in beta-cell mass, no effect on glucose homeostasis in beta gamma KO mice was noted. Additionally, while thiazolidinediones enhanced insulin secretion from cultured wild-type islets, administration of rosiglitazone to insulin-resistant control and beta gamma KO mice revealed that PPAR gamma in beta cells is not required for the antidiabetic actions of these compounds. These data demonstrate a critical physiological role for PPAR gamma function in beta-cell proliferation and also indicate that the mechanisms controlling beta-cell hyperplasia in obesity are different from those that regulate baseline cell mass in the islet.  相似文献   

4.
The recent success of pancreatic islet transplantation has generated considerable enthusiasm. To better understand the quality and characteristics of human islets used for transplantation, we performed detailed analysis of islet architecture and composition using confocal laser scanning microscopy. Human islets from six separate isolations provided by three different islet isolation centers were compared with isolated mouse and non-human primate islets. As expected from histological sections of murine pancreas, in isolated murine islets alpha and delta cells resided at the periphery of the beta-cell core. However, human islets were markedly different in that alpha, beta, and delta cells were dispersed throughout the islet. This pattern of cell distribution was present in all human islet preparations and islets of various sizes and was also seen in histological sections of human pancreas. The architecture of isolated non-human primate islets was very similar to that of human islets. Using an image analysis program, we calculated the volume of alpha, beta, and delta cells. In contrast to murine islets, we found that populations of islet cell types varied considerably in human islets. The results indicate that human islets not only are quite heterogeneous in terms of cell composition but also have a substantially different architecture from widely studied murine islets.  相似文献   

5.
6.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

7.
X Wu  Q Zhang  X Wang  J Zhu  K Xu  H Okada  R Wang  M Woo 《PloS one》2012,7(8):e41976

Aims/Hypothesis

Pancreatic beta-cell mass expands through adulthood under certain conditions. The related molecular mechanisms are elusive. This study was designed to determine whether surviving (also known as Birc5), which is transiently expressed perinatally in islets, was required for beta-cell mass expansion in the pancreatic duct-ligated mouse model.

Methods

Mice with beta cell–specific deletion of survivin (RIPCre+survivinfl/fl) and their control littermates (RIPCre+survivin+/+) were examined to determine the essential role of survivin in partial pancreatic duct ligation (PDL)-induced beta-cell proliferation, function and survival.

Results

Resurgence of survivin expression occurred as early as day 3 post-PDL. By day 7 post-PDL, control mice showed significant expansion of beta-cell mass and increase in beta-cell proliferation and islet number in the ligated tail of the pancreas. However, mice deficient in beta-cell survivin showed a defect in beta-cell mass expansion and proliferation with a marked attenuation in the increase of total islet number, largely due to an impairment in the increase in number of larger islets while sparing the increase in number of small islets in the ligated tail of pancreas, resulting in insufficient insulin secretion and glucose intolerance. Importantly however, beta cell neogenesis and apoptosis were not affected by the absence of survivin in beta cells after PDL.

Conclusions/Interpretation

Our results indicate that survivin is essential for beta-cell mass expansion after PDL. Survivin appears to exhibit a preferential requirement for proliferation of preexisting beta cells.  相似文献   

8.
Nittala A  Ghosh S  Wang X 《PloS one》2007,2(10):e983
The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b), the synchronization index lambda of the bursting beta cells, the bursting period T(b), the plateau fraction p(f), and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta), number of inter-beta cell couplings of each beta cell n(c), and the coupling strength g(c). We found that at low values of n(beta), n(c) and g(c), the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta) approximately 100, n(c) approximately 6 and g(c) approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta)> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions.  相似文献   

9.
Expansion and redifferentiation of adult human pancreatic islet cells   总被引:7,自引:0,他引:7  
Beta-cell replacement represents the ultimate cure for type 1 diabetes, however it is limited by availability of organ donors. Adult human islets are difficult to propagate in culture, and efforts to expand them result in dedifferentiation. Here we describe conditions for expansion of adult human islet cells, as well as a way for their redifferentiation. Most cells in islets isolated from human pancreata were induced to replicate within the first week of culture in expansion medium. Cells were propagated for 16 population doublings, without a change in replication rate or noticeable cell mortality, representing an expansion of over 65,000-fold. Replication was accompanied by a decrease in expression of key beta-cell genes. Shift of the cells to differentiation medium containing betacellulin resulted in redifferentiation, as manifested by restoration of beta-cell gene expression and insulin content. These methods may allow transplantation of functional islet cells from single donors into multiple recipients.  相似文献   

10.
Islet beta-cell proliferation is a very important component of beta-cell adaptation to insulin resistance and prevention of type 2 diabetes mellitus. However, we know little about the mechanisms of beta-cell proliferation. We now investigate the relationship between pyruvate carboxylase (PC) pathway activity and islet cell proliferation 5 days after 60% pancreatectomy (Px). Islet cell number, protein, and DNA content, indicators of beta-cell proliferation, were increased two- to threefold 5 days after Px. PC and pyruvate dehydrogenase (PDH) activities increased only approximately 1.3-fold; however, islet pyruvate content and malate release from isolated islet mitochondria were approximately threefold increased in Px islets. The latter is an indicator of pyruvate-malate cycle activity, indicating that most of the increased pyruvate was converted to oxaloacetate (OAA) through the PC pathway. The contents of OAA and malate, intermediates of the pyruvate-malate cycle, were also increased threefold. PDH and citrate content were only slightly increased. Importantly, the changes in cell proliferation parameters, glucose utilization, and oxidation and malate release were partially blocked by in vivo treatment with the PC inhibitor phenylacetic acid. Our results suggest that enhanced PC pathway in Px islets may have an important role in islet cell proliferation.  相似文献   

11.
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult beta cells revealed that this gene is required for maintenance of mature beta cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic beta cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin(+) cells and an increase in both glucagon(+) and somatostatin(+) cells. Lineage tracing revealed that excess glucagon(+) and somatostatin(+) cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the beta cells generated at late gestation, and that one function of normal beta cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.  相似文献   

12.
Wnt proteins act mainly as paracrine signals regulating cell proliferation and differentiation. The canonical Wnt pathway has recently been associated with pancreas development and the onset of type 2 diabetes in rodent and human but the underlying mechanisms are still unclear. The aim of this work was threefold: (a) to screen for Wnt expressed by murine pancreas/islet cells, (b) to investigate whether the Wnt gene expression profile can be changed in hyperplastic islets from type 2 prediabetic mice (fed a high-fat diet), and (c) to verify whether soluble factors (namely Wnts) released by pancreatic islets affect insulin secretion and proliferation of a beta-cell line in vitro condition. The majority of the Wnt subtypes are expressed by islet cells, such as Wnts 2, 2b, 3, 3a, 4, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9a, 9b, and 11, while in the whole pancreas homogenates were found the same subtypes, except Wnts 3, 6, 7a, and 7b. Among all the Wnts, the Wnts 3a and 5b showed a significantly increased gene expression in hyperplastic islets from prediabetic mice compared with those from control mice. Furthermore, we observed that coculture with hyperplastic or nonhyperplastic islets did not change the secretory function of the mouse insulinoma clone 6 (MIN6) beta cells but induced a significant increase in cell proliferation in this lineage, which was partially blocked by the IWR-1 and IWP-2 Wnt inhibitors. In conclusion, we demonstrated that murine pancreas/islet cells can secrete Wnts, and that islet-released Wnts may participate in the regulation of beta-cell mass under normal and prediabetic conditions.  相似文献   

13.
Viral infection is one environmental factor that may initiate beta-cell damage during the development of autoimmune diabetes. Formed during viral replication, double-stranded RNA (dsRNA) activates the antiviral response in infected cells. In combination, synthetic dsRNA (polyinosinic-polycytidylic acid, poly(I-C)) and interferon (IFN)-gamma stimulate inducible nitric-oxide synthase (iNOS) expression, inhibit insulin secretion, and induce islet degeneration. Interleukin-1 (IL-1) appears to mediate dsRNA + IFN-gamma-induced islet damage in a nitric oxide-dependent manner, as the interleukin-1 receptor antagonist protein prevents dsRNA + IFN-gamma-induced iNOS expression, inhibition of insulin secretion, and islet degeneration. IL-1beta is synthesized as an inactive precursor protein that requires cleavage by the IL-1beta-converting enzyme (ICE) for activation. dsRNA and IFN-gamma stimulate IL-1beta expression and ICE activation in primary beta-cells, respectively. Selective ICE inhibition attenuates dsRNA + IFN-gamma-induced iNOS expression by primary beta-cells. In addition, poly(I-C) + IFN-gamma-induced iNOS expression and nitric oxide production by human islets are prevented by interleukin-1 receptor antagonist protein, indicating that human islets respond to dsRNA and IFN-gamma in a manner similar to rat islets. These studies provide biochemical evidence for a novel mechanism by which viral infection may initiate beta-cell damage during the development of autoimmune diabetes. The viral replicative intermediate dsRNA stimulates beta-cell production of pro-IL-1beta, and following cleavage to its mature form by IFN-gamma-activated ICE, IL-1 then initiates beta-cell damage in a nitric oxide-dependent fashion.  相似文献   

14.
The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells attached, spread out, and proliferated into monolayers mainly consisting of insulin-containing cells. The number of beta-cells in S-phase was increased from 0.9-6.5% as determined by immunochemical staining of bromodeoxyuridine incorporated into insulin-positive cells. The increase in cell number was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin. It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell.  相似文献   

15.
We have previously shown that fetuses from undernourished (U) pregnant rats exhibited an increased beta-cell mass probably related to an enhanced IGF-I replicative response. Because IGF-I signaling pathways have been implicated in regulating beta-cell growth, we investigated in this study the IGF-I transduction system in U fetuses. To this end, an in vitro model of primary fetal islets was developed to characterize glucose/IGF-I-mediated signaling that specially influences beta-cell proliferation. We found that U fetal islets showed a greater replicative response to glucose and IGF-I than controls. Furthermore, insulin receptor substrate (IRS)-2 protein and its association with p85 were also increased. In the complete absence of IGF-I or stimulatory glucose, U islets presented an increased basal phosphorylation of downstream signals of the phosphatidylinositol 3-kinase (PI3K) pathway such as PKB, glycogen synthase kinase (GSK)3alpha/beta, PKCzeta, and mammalian target of rapamycin (mTOR). Similarly, phosphorylation of these proteins (except GSK3alpha/beta) by glucose and IGF-I was augmented even though total protein content remained unchanged. Downstream of PKB, direct glucose activation of mTOR was increased as well. In contrast, ERK1/2 phosphorylation was unaffected by undernutrition, but ERK activation seemed to be required to induce a higher proliferative response in U islets. In conclusion, we have demonstrated that fetal U islets show increased IRS-2 content and an enhancement in both basal and glucose/IGF-I activations of the IRS-2/PI3K/PKB pathway. These molecular changes may be responsible for the greater glucose/IGF-I islet replication and contribute to the increased beta-cell mass found in these fetuses.  相似文献   

16.
A decrease in functional beta-cell mass is a key feature of type 2 diabetes. Glucagon-like peptide 1 (GLP-1) analogues induce proliferation of rodent beta-cells. However, the proliferative capacity of human beta-cells and its modulation by GLP-1 analogues remain to be fully investigated. We therefore sought to quantify adult human beta-cell proliferation in vitro and whether this is affected by the GLP-1 analogue liraglutide.Human islets from 7 adult cadaveric organ donors were dispersed into single cells. Beta-cells were purified by FACS. Non-sorted cells and the beta-cell enriched ("beta-cells") population were plated on extracellular matrix from rat (804G) and human bladder carcinoma cells (HTB9) or bovine corneal endothelial ECM (BCEC). Cells were maintained in culture+/-liraglutide for 4 days in the presence of BrdU.Rare human beta-cell proliferation could be observed either in the purified beta-cell population (0.051±0.020%; 22 beta-cells proliferating out of 84'283 beta-cells counted) or in the non-sorted cell population (0.055±0.011%; 104 proliferating beta-cells out of 232'826 beta-cells counted), independently of the matrix or the culture conditions. Liraglutide increased human beta-cell proliferation on BCEC in the non-sorted cell population (0.082±0.034% proliferating beta-cells vs. 0.017±0.008% in control, p<0.05).These results indicate that adult human beta-cell proliferation can occur in vitro but remains an extremely rare event with these donors and particular culture conditions. Liraglutide increases beta-cell proliferation only in the non-sorted cell population and only on BCEC. However, it cannot be excluded that human beta-cells may proliferate to a greater extent in situ in response to natural stimuli.  相似文献   

17.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

18.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

19.
20.
Recent studies have demonstrated that human islet allograft transplantation can be a successful therapeutic option in the treatment of patients with Type I diabetes. However, this impressive recent advance is accompanied by a very important constraint. There is a critical paucity of pancreatic islets or pancreatic beta cells for islet transplantation to become a large-scale therapeutic option in patients with diabetes. This has prompted many laboratories around the world to invigorate their efforts in finding ways for increasing the availability of beta cells or beta cell surrogates that potentially could be transplanted into patients with diabetes. The number of studies analyzing the mechanisms that govern beta cell proliferation and growth in physiological and pathological conditions has increased exponentially during the last decade. These studies exploring the role of growth factors, intracellular signaling molecules and cell cycle regulators constitute the substrate for future strategies aimed at expanding human beta cells in vitro and/or in vivo after transplantation. In this review, we describe the current knowledge on the effects of several beta cell growth factors that have been shown to increase beta cell proliferation and expand beta cell mass in vitro and/or in vivo and that they could be potentially deployed in an effort to increase the number of patients transplanted with islets. Furthermore, we also analyze in this review recent studies deciphering the relevance of these specific islet growth factors as physiological and pathophysiological regulators of beta cell proliferation and islet growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号