首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink‐driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought‐induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink‐driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.  相似文献   

2.
The diurnal water budget of developing grape (Vitis vinifera L.) berries was evaluated before and after the onset of fruit ripening (veraison). The diameter of individual berries of potted ‘Zinfandel’ and ‘Cabernet Sauvignon’ grapevines was measured continuously with electronic displacement transducers over 24 h periods under controlled environmental conditions, and leaf water status was determined by the pressure chamber technique. For well-watered vines, daytime contraction was much less during ripening (after veraison) than before ripening. Daytime contraction was reduced by restricting berry or shoot transpiration, with the larger effect being shoot transpiration pre-veraison and berry transpiration post-veraison. The contributions of the pedicel xylem and phloem as well as berry transpiration to the net diurnal water budget of the fruit were estimated by eliminating phloem or phloem and xylem pathways. Berry transpiration was significant and comprised the bulk of water outflow for the berry both before and after veraison. A nearly exclusive role for the xylem in water transport into the berry was evident during pre-veraison development, but the phloem was clearly dominant in the post-veraison water budget. Daytime contraction was very sensitive to plant water status before veraison but was remarkably insensitive to changes in plant water status after veraison. This transition is attributed to an increased phloem inflow and a partial discontinuity in berry xylem during ripening.  相似文献   

3.
The influence of air vapor pressure deficit (VPD) and plant fruit load on the expansion and water relations of young tomato fruits grown in a glasshouse were evaluated under summer Mediterranean conditions. The contributions of phloem, xylem and transpiration fluxes to the fruit volume increase were estimated at an hourly scale from the growth curves of intact, heat-girdled and detached fruits, measured using displacement transducers. High VPD conditions reduced the xylem influx and increased the fruit transpiration, but hardly affected the phloem influx. Net water accumulation and growth rate were reduced, and a xylem efflux even occurred during the warmest and driest hours of the day. Changes in xylem flux could be explained by variations in the gradient of water potential between stem and fruit, due to changes in stem water potential. Misting reduced air VPD and alleviated the reduction in fruit volume increase through an increase in xylem influx and a decrease in fruit transpiration. Under low fruit load, the competition for assimilates being likely reduced, the phloem flux to fruits increased, similarly to the xylem and transpiration fluxes, without any changes in the fruit water potential. However, different diurnal dynamics among treatments assume variable contributions of turgor and osmotic pressure in F3 and F6 fruits, and hypothetical short-term variations in the water potential gradient between stem and fruit, preventing xylem efflux in F3 fruits.  相似文献   

4.
The minute changes in volume of a grape berry which occur fromhour to hour were measured non-destructively in the field usingreadily available and cheap laboratory equipment and a modernelectronic balance. The method, applicable even to small (approximately10 g) fruits, is based on Archimedes' principle and gave a resolutionof about 1 part in 1 000 by measuring the buoyant upthrust experiencedby a berry when immersed in water. Volume data from control,pedicel-steamed, and detached berries were used to calculatethe magnitudes and directions of the fluid flows which tookplace through the stalk of the phloem and xylem streams andthrough the skin in the transpiration stream. In the latter stages of fruit development, after the onset ofripening, net volume growth more or less ceases in grapes althoughtheir rate of sugar import is at its strongest. Cessation ofvolume growth comes about because the strong inflow of sugarywater in the phloem is closely balanced in part by transpirationalwater loss through the skin and in part by the backflow of xylemwater to the parent vine. This xylem backflow appears to persistthroughout the diurnal cycle. The net backflow direction of the xylem stream, together withthe inability of the phloem stream to carry certain ions (notablycalcium), may explain how some mineral imbalance disorders arisein the later stages of fruit development. The intense manner in which fruiting sinks compete with vegetativesinks in Vitis finds its explanation in the breakdown of apoplast:symplast compartmentation in the berry which occurs around thetime of onset of ripening. The breakdown exposes the terminalsieve tubes of the berry to a highly negative water potentialenvironment, serving to increase both the speed and the concentrationof the translocation stream. Key words: Archimedes' principle, volume measurement, mineral nutrition, xylem, phloem, assimilate partitioning, fruit splitting  相似文献   

5.
Recently, contradicting evidence has been reported on the contribution of xylem and phloem influx into tomato fruits, urging the need for a better understanding of the mechanisms involved in fruit growth. So far, little research has been performed on quantifying the effect of light intensity on the different contributors to the fruit water balance. However, as light intensity affects both transpiration and photosynthesis, it might be expected to induce important changes in the fruit water balance. In this study, tomato plants (Solanum lycopersicum L.) were grown in light and shade conditions and the fruit water balance was studied by measuring fruit growth of girdled and intact fruits with linear variable displacement transducers combined with a model‐based approach. Results indicated that the relative xylem contribution significantly increased when shading lowered light intensity. This resulted from both a higher xylem influx and a lower phloem influx during the daytime. Plants from the shade treatment were able to maintain a stronger gradient in total water potential between stem and fruits during daytime, thereby promoting xylem influx. It appeared that the xylem pathway was still functional at 35 days after anthesis and that relative xylem contribution was strongly affected by environmental conditions.  相似文献   

6.
Carbon and water balances for young fruits of platyopuntias   总被引:1,自引:0,他引:1  
Questions relating to transpired versus retained water for fruits, the xylem versus the phloem as water supplier to the fruits, and the importance of fruit photosynthesis for fruit dry mass gain were examined in the field for 6 species of platyopuntias ( Nopalea cochenillifera , Opuntia ficus-indica , O. megacantha , O. robusta , O. streptacantha and O. undulata ), cacti with flattened stem segments (cladodes). For plants with fruits midway between floral bud appearance and fruit maturation, transpiration was greater at night for the cladodes, as expected for Crassulacean acid metabolism (CAM) plants, but greater during the daytime for the fruits of all 6 species. Nevertheless, net CO2 uptake by fruits of these platyopuntias occurred predominantly at night, as expected for CAM plants. The water potential of the young fruits (average of −0.41 MPa) was higher than that of the cladodes (average of −0.60 MPa), indicating that water entered the fruits via the phloem rather than via the xylem. Solution entry into the fruits via the phloem supplied the water lost by transpiration and allowed for increases in fruit fresh mass (daily transpiration averaged 3.2-fold higher than daily water content increases), while the accumulating solutes were apparently polymerized to account for the higher water potentials of the fruits compared with the cladodes. The phloem thus acts as the sole supplier of water and the main supplier of dry mass (90%) to such young fruits of platyopuntias.  相似文献   

7.
The relative contributions of xylem, phloem, and transpiration to fruit growth and the daily patterns of their flows have been determined in peach, during the two stages of rapid diameter increase, by precise and continuous monitoring of fruit diameter variations. Xylem, phloem, and transpiration contributions to growth were quantified by comparing the diurnal patterns of diameter change of fruits, which were then girdled and subsequently detached. Xylem supports peach growth by 70%, and phloem 30%, while transpiration accounts for approximately 60% of daily total inflows. These figures and their diurnal patterns were comparable among years, stages, and cultivars. Xylem was functional at both stage I and III, while fruit transpiration was high and strictly dependent on environmental conditions, causing periods of fruit shrinkage. Phloem imports were correlated to fruit shrinkage and appear to facilitate subsequent fruit enlargement. Peach displays a growth mechanism which can be explained on the basis of passive unloading of photoassimilates from the phloem. A pivotal role is played by the large amount of water flowing from the tree to the fruit and from the fruit to the atmosphere.  相似文献   

8.
Xylem, Phloem and Transpiration Flows in Developing Apple Fruits   总被引:8,自引:3,他引:5  
Xylem, phloem and transpiration flows were measured in developingfruits of the apples Royal Gala and Cox's Orange Pippin at early,mid and late stages during their development. Fruit volume growthwas first computed from measurements of diameter made usinga system of sensitive displacement transducers. Xylem, phloemand transpiration flow components (of which fruit volume growthis the integral) were then separated using a scheme of treatmentswhich disabled one or other flow at a time. Changes observed during development in the patterns of the threeflows are in general agreement with expectations based on lessdirect observations (loc. cit. Ferguson and Watkins, 1989).Recognizing the distinctive mineral compositions of xylem andphloem streams, the changes also accommodate, and seem to explain,published observations of mineral accumulation in apple. Significant differences in the pattern of xylem and phloem flowwere observed between the varieties examined. These may explainvarietal differences in susceptibility to the mineral imbalancedisorder bitter-pit. Xylem flows were shown to reverse at times; that is they flowedfrom fruit to tree. This occurred particularly during periodsof high evaporative demand. Xylem reversal is of importanceto the overall water economy of a tree but may also have specialimportance to the mineral composition of the fruit. Key words: Mineral nutrition, bitter-pit, apple, xylem, phloem, transpiration, water balance  相似文献   

9.
The study was conducted in order to determine whether water stress affects the accumulation of dry matter in tomato fruits similarly to salinity, and whether the increase in fruit dry matter content is solely a result of the decrease in water content. Although the rate of water transport to tomato fruits decreased throughout the entire season in saline water irrigated plants, accumulation rates of dry matter increased significantly. Phloem water transport contributed 80–85% of the total water transport in the control and water-stressed plants, and over 90% under salinity. The concentration of organic compounds in the phloem sap was increased by 40% by salinity. The rate of ions transported via the xylem was also significantly increased by salinity, but their contribution to fruit osmotic adjustment was less. The rate of fruit transpiration was also markedly reduced by salinity. Water stress also decreased the rate of water transport to the tomato fruit and increased the rate of dry matter accumulation, but much less than salinity. The similar changes, 10–15%, indicate that the rise in dry matter accumulation was a result of the decrease in water transport. Other parameters such as fruit transpiration rates, phloem and xylem sap concentration, relative transport via phloem and xylem, solutes contributing to osmotic adjustment of fruits and leaves, were only slightly affected by water stress. The smaller response of these parameters to water stress as compared to salinity could not be attributed to milder stress intensity, as leaf water potential was found to be more negative. Measuring fruit growth of girdled trusses, in which phloem flow was inactive, and comparing it with ungirdled trusses validated the mechanistic model. The relative transport of girdled as compared to ungirdled fruits resembled the calculated values of xylem transport.  相似文献   

10.
Field evaluation of water transport in grape berries during water deficits   总被引:4,自引:0,他引:4  
The net flow in vascular and transpirational components of the grape berry water budget was evaluated during water deficits imposed at different stages of fruit development. Diurnal fluctuations in berry diameter were measured on field-grown grapevines ( Vitis vinifera L. cv. Cabernet Sauvignon) by using electronic displacement transducers. Water deficits were imposed by withholding irrigation, and water potentials of mid-shoot leaves, basal stem xylem and clusters were determined with a pressure chamber. The relative net flows through pedicel xylem and phloem and through berry transpiration were estimated pre-veraison and post-veraison. The xylem functioned nearly exclusively in providing net inflow pre-veraison, while the phloem was clearly dominant post-veraison. Accordingly, the amplitude of diurnal contraction was markedly smaller post-veraison than pre-veraison. The amplitude of diurnal contraction increased dramatically with decreasing plant water status pre-veraison, yet exhibited little sensitivity to low vine water status post-veraison. Measurements of the difference in water potential between clusters and source stems did not provide evidence of a gradient that would elicit significant water movement from the cluster to the stem at any time of the day. This was true for both irrigated and non-irrigated vines, although the non-irrigated vines exhibited a smaller gradient favoring inflow throughout much of the day. The gradient for xylem water transport to the cluster was considerably smaller post-veraison than pre-veraison. The results showed that berry transpiration functioned as the primary pathway for water loss both pre- and post-veraison.  相似文献   

11.
Diurnal water balance of the cowpea fruit   总被引:9,自引:1,他引:8       下载免费PDF全文
The vascular network of the cowpea (Vigna unguiculata [L.] Walp.) fruit exhibits the anatomical potential for reversible xylem flow between seeds, pod, and parent plant. Feeding of cut shoots with the apoplast marker acid fuchsin showed that fruits imported regularly via xylem at night, less frequently in early morning, and only rarely in the afternoon. The dye never entered seeds or inner dorsal pod strands connecting directly to seeds. Root feeding (early morning) of intact plants with 32PO4 or 3H2O rapidly (20 min) labeled pod walls but not seeds, consistent with uptake through xylem. Weak subsequent (4 hours) labeling of seeds suggested slow secondary exchange of label with the phloem stream to the fruit. Vein flap feeding of subtending leaves with [14C]sucrose, 3H2O, and 32PO4 labeled pod and seed intensely, indicating mass flow in phloem to the fruit. Over 90% of the 14C and 3H of fruit cryopuncture phloem sap was as sucrose and water, respectively. Specific 3H activities of transpired water collected from fruits and peduncles were assayed over 4 days after feeding 3H2O to roots, via leaf flaps, or directly to fruits. The data indicated that fruits transpired relatively less xylem-derived (apoplastic) water than did peduncles, that fruit and peduncle relied more heavily on phloem-derived (symplastic) water for transpiration in the day than at night, and that water diffusing back from the fruit was utilized in peduncle transpiration, especially during the day. The data collectively support the hypothesis of a diurnally reversing xylem flow between developing fruit and plant.  相似文献   

12.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

13.
Analyses of successively collected fractions of phloem exudate of Yucca flaccida, and of Yucca fruits picked at various stages of growth, together with experiments on transpiration from fruits, have led to the following conclusions:
  • 1 During fruit growth potassium, sodium, magnesium, phosphorus compounds, and nitrogenous substances are delivered to the fruit by both the xylem and the phloem. These solutes move also easily in radial direction between the xylem and phloem part of the vascular bundles. Actually they can be regarded as constituents of one stream of nutrients.
  • 2 The overall efficiency of conversion of vascular-fluid dry matter into mature-fruit dry matter is approximately 61 %.
  • 3 During its whole period of growth the fruit transpires an amount of water vapour of at least 6 times its own mature fresh weight.
  • 4 Estimates could be made for the relative contributions of xylem and phloem in the delivery of fruit constituents. 18% of the water imported by the fruit during its growth had a phloem, 82 % a xylem origin; 89% is transpired, 11 % retained as a fruit constituent. At least 94 % of the dry matter, 69% of the potassium, 56% of the magnesium, 26% of the phosphorus, and 7% of the calcium of the average fruit have been delivered by the phloem. The translocation of nitrogenous substances occurs probably partly in a more indirect way with temporary storage in inflorescence parenchyma.
  相似文献   

14.
A model of within-plant carbon allocation is proposed which makes a generalized use of the Münch mechanism to integrate carbon and water functions and their involvement in growth limitations. The plant is envisioned as a branched network of resistive pathways (phloem and xylem) with nodal organs acting as sources and sinks for sucrose. Four elementary organs (leaf, stem, fruit, root) are described with their particular sink functions and hydraulic attributes. Given the rates of photosynthesis and transpiration and the hydraulic properties of the network as inputs, the model calculates the internal fluxes of water and sucrose. Xylem water potential (Psi), phloem sucrose concentration (C) and turgor pressure (P) are calculated everywhere in the network accounting for osmotic equilibrium between apoplasm and symplasm and coupled functioning of xylem and phloem. The fluxes of phloem and xylem saps are driven by the gradients of P and Psi, respectively. The fruit growth rate is assumed as turgor pressure dependent. To demonstrate its ability to address within-plant competition, the model is run with a simple-branched structure gathering three leaves, eight stem segments, three competing growing fruits and one root. The model was programmed with P-Spice, a software specifically designed for simulating electrical circuits but easily adaptable to physiology. Simulations of internal water fluxes, sucrose concentrations and fruit growth rates are given for different conditions of soil water availability and hydraulic resistances (sensitivity analysis). The discussion focuses on the potential interest of this approach in functional--structural plant models to address water stress-induced effects.  相似文献   

15.
Fluctuations in mineral elements id xylem (tracheal) sap, fruitphloem sap, leaflets and dmloping fruits were studied in a fieldpopulation of Lupinus angustifolius L. by three-hourly samplingover a 39 h period. Elements usually reached maximum contentsor concentrations at or near noon, minimum levels during thenight. Amplitudes of diurnal fluctuations in minerals lay withinthe range ±4–33 per cent of the mean content ofleaflets, and ±17–157 per cent of the mean concentrationsin xylem and phloem sap. Most minerals elements fluctuatcd inphase with daily changes in sugar level of phloem sap and drymatter and carbohydrate fluctuations of leaflets, suggestinga coupling of translocation of photosynthate and minerals fromthe leaflets. Rates of import of minerals by shoots wereestimatedfrom shoot transpiration and mineral concentrations in trachealsap. Average day time rates of import of most elements were12–25 times those at night. Translocation of minerals,nitrogen and carbon to fruits also exhibited diurnal periodicity,average rates of import king three to seven times higher inthe day than at night. A model of transport based on the carbonand water economy of the fruit suggested that P, K, Fe, Zn,Mn and Cu were imported predominantly by phloem. Estimates ofvascular import accounted for 87–104 per cent of the fruit'sactual increment of these elements. Na and Ca were gauged tobe imported mainly by xylem, Mg almost equally by xylem andphloem. However, large discrepancies existed for these threeelements between estimated vascular import and actual intakeby the fruit. Lupinus angustifolius L., mineral transport, accumulation, fruits, xylem sap, phloem sap, transpiration  相似文献   

16.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

17.
The nutritional economy of the fruit of cowpea (Vigna unguiculata (L.) Walp cv Vita 3) was assessed quantitatively from intake and utilization of carbon, nitrogen, and water. Fruits failed to make net gains of CO2 from the atmosphere during daytime, although pod photosynthesis did play a role in the fruit's carbon economy by refixing a proportion of the fruit's respired CO2. Of every 100 units by weight of carbon entering the fruit, 70.4 were finally incorporated into seeds, 10.3 remained as nonmobilizable material in pod walls, and the remaining 19.3 were lost in fruit respiration. Phloem supplied 97% of the fruit's carbon and 72% of its nitrogen. The xylem contribution of nitrogen occurred mainly in early growth. Ninety-six% of the fruit's nitrogen was incorporated into seeds, approximately 10% of this mobilized from the senescing pod. The mean transpiration ratio of the fruit was very low—8 milliliters water transpired per gram dry matter accumulated. Models of carbon, nitrogen, and water flow were constructed for the two consecutive 11 day periods of fruit development, and indicated a considerably greater entry of water through xylem and phloem than could be accounted for in changes in fruit tissue water and transpiration loss. This discrepancy was greater in the second half of fruit growth and was interpreted as evidence that a significant fraction of the water entering the fruit through phloem cycled back to the parent plant via the xylem.  相似文献   

18.
The experiment was carried out during the ripening of grape (Vitis vinifera L. and V. vinifera × V. labrusca) fruits using the technique of dye tracing and measurement of water potential. Under the natural conditions of sufficient soil water supply and those of a high evapotranspiration potentiality on clear days, the water in fruits was transfered, during the morning and afternoon, out of the clusters and into the xylem of shoots; but the fruits capture water in the late afternoon and evening from the xylem of shoots. The diurnal variations of the water exchange between fruits and the xylem of shoots have been described and these variations seemed to be relevant not only to the differences of water potential between leaves and fruits but also to the hydraulic status of fruits. Under the mild water stress, the variations of the diurnal "fruits-shoots" water exchange were similar to those under the conditions of ample water supply, but the rate of "fruits-shoots" water exchange in the lightly stressed vine was decreased as compared with the fully watered vines. After a certain period of severe water stress, the fruits possessed a great capacity of conserving their water and an equilibrium in water potential was set up between leaves and fruits so that the fruits did not lose any more water. Under a sudden severe water stress, the fruits lost water at a higher outflux rate than when the water supply was sufficient. However, this water loss ceased rapidly. The water flowing out from the fruits was privileged to pass in the lateral shoots located above and on the same side of the fruits, and then the water might enter the primary shoot leaves situated above and on the same side of the fruits. Water captured by the fruits of the well watered vines in the evening came from the roots while under severe stress water might be obtained from the roots and also from the leaves as well. The fruit cell water potential, solute potential and pressure potential were different from those of leaves, mainly in the more important differences of water potential necessitated for the volume changes of fruit cell after incipient plasmolysis in com parison with leaves. Finally the relationships between water exchange and water potential dif ferences between "fruits-shoots", associated with the fruits hydraulic status, have been discussed. The possible relationships between water "sink-source" of fruits and the fruit development have been analysed.  相似文献   

19.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   

20.

Background and Aims

The kiwifruit berry is characterized by an early stage of rapid growth, followed by a relatively long stage of slow increase in size. Vascular and transpiration flows are the main processes through which water and carbon enter/exit the fruit, determining the daily and seasonal changes in fruit size. This work investigates the biophysical mechanisms underpinning the change in fruit growth rate during the season.

Methods

The daily patterns of phloem, xylem and transpiration in/outflows have been determined at several stages of kiwifruit development, during two seasons. The different flows were quantified by comparing the diurnal patterns of diameter change of fruit, which were then girdled and subsequently detached while measurements continued. The diurnal courses of leaf and stem water potential and of fruit pressure potential were also monitored at different times during the season.

Key Results

Xylem and transpiration flows were high during the first period of rapid volume growth and sharply decreased with fruit development. Specific phloem import was lower and gradually decreased during the season, whereas it remained constant at whole-fruit level, in accordance with fruit dry matter gain. On a daily basis, transpiration always responded to vapour pressure deficit and contributed to the daily reduction of fruit hydrostatic pressure. Xylem flow was positively related to stem-to-fruit pressure potential gradient during the first but not the last part of the season, when xylem conductivity appeared to be reduced.

Conclusions

The fruit growth model adopted by this species changes during the season due to anatomical modifications in the fruit features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号