首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.  相似文献   

2.
Flagellins from Pseudomonas syringae pv. glycinea race 4 and Pseudomonas syringae pv. tabaci 6605 have been found to be glycosylated. Glycosylation of flagellin is essential for bacterial virulence and is also involved in the determination of host specificity. Flagellin glycans from both pathovars were characterized, and common sites of glycosylation were identified on six serine residues (positions 143, 164, 176, 183, 193, and 201). The structure of the glycan at serine 201 (S201) of flagellin from each pathovar was determined by sugar composition analysis, mass spectrometry, and (1)H and (13)C nuclear magnetic resonance spectroscopy. These analyses showed that the S201 glycans from both pathovars were composed of a common unique trisaccharide consisting of two rhamnosyl (Rha) residues and one modified 4-amino-4,6-dideoxyglucosyl (Qui4N) residue, beta-D-Quip4N(3-hydroxy-1-oxobutyl)2Me-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap. Furthermore, mass analysis suggests that the glycans on each of the six serine residues are composed of similar trisaccharide units. Determination of the enantiomeric ratio of Rha from the flagellin proteins showed that flagellin from P. syringae pv. tabaci 6605 consisted solely of L-Rha, whereas P. syringae pv. glycinea race 4 flagellin contained both L-Rha and D-Rha at a molar ratio of about 4:1. Taking these findings together with those from our previous study, we conclude that these flagellin glycan structures may be important for the virulence and host specificity of P. syringae.  相似文献   

3.
Gram-negative bacterial pathogens have evolved a number of virulence-promoting strategies including the production of extracellular polysaccharides such as alginate and the injection of effector proteins into host cells. The induction of these virulence mechanisms can be associated with concomitant downregulation of the abundance of proteins that trigger the host immune system, such as bacterial flagellin. In Pseudomonas syringae, we observed that bacterial motility and the abundance of flagellin were significantly reduced under conditions that induce the type III secretion system. To identify genes involved in this negative regulation, we conducted a forward genetic screen with P. syringae pv. maculicola ES4326 using motility as a screening phenotype. We identified the periplasmic protease AlgW as a key negative regulator of flagellin abundance that also positively regulates alginate biosynthesis and the type III secretion system. We also demonstrate that AlgW constitutes a major virulence determinant of P. syringae required to dampen plant immune responses. Our findings support the conclusion that P. syringae co-ordinately regulates virulence strategies through AlgW in order to effectively suppress host immunity.  相似文献   

4.
The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.  相似文献   

5.
6.
The Pseudomonas aeruginosa -derived alkaline protease (AprA), elastase A (LasA), elastase B (LasB) and protease IV are considered to play an important role in pathogenesis of this organism. Although the sequence analysis of P. aeruginosa genome predicts the presence of several genes encoding other potential proteases in the genome, little has been known about the proteases involving in pathogenesis. Recently, Porphyromonas gingivalis gingipains and Serratia marcescens serralysin have been shown to activate protease-activated receptor 2 (PAR-2), thereby modulating host inflammatory and immune responses. Accordingly, we hypothesized that unknown protease(s) from P. aeruginosa would also modulate such responses through PARs. In this study, we found that P. aeruginosa produces a novel l arge e xo p rotease (LepA) distinct from known proteases such as AprA, LasA, LasB and protease IV. Sequence analysis of LepA showed a molecular feature of the proteins transported by the two-partner secretion pathway. Our results indicated that LepA activates NF-κB-driven promoter through human PAR-1, -2 or -4 and cleaves the peptides corresponding to the tethered ligand region of human PAR-1, -2 and -4 at a specific site with exposure of their tethered ligands. Considered together, these results suggest that LepA would require PARs to modulate various host responses against bacterial infection.  相似文献   

7.
Matsumoto K 《Biological chemistry》2004,385(11):1007-1016
Pseudomonas aeruginosa and Serratia marcescens can cause refractory keratitis resulting in corneal perforation and blindness. These bacteria produce various kinds of proteases. In addition to pseudomonal elastase (LasB) and alkaline protease, LasA protease and protease IV have recently been found to be more important virulence factors of P. aeruginosa . S. marcescens produces a cysteine protease in addition to metalloproteases. These bacterial proteases have a number of biological activities, such as degradation of tissue constituents and host defense-oriented proteins, as well as activation of zymogens (Hageman factor, prekallikrein and pro-matrix metalloproteinases) through limited proteolysis. In this article, the properties of these bacterial proteases are reviewed and the pathogenic roles of these proteases in pseudomonal keratitis are discussed.  相似文献   

8.
Conserved microbial molecules known as PAMPs (pathogen-associated molecular patterns) elicit defence responses in plants through extracellular receptor proteins. One important PAMP is the flagellin protein derived from motile bacteria. We show here that the solanaceous species Nicotiana benthamiana perceives the flagellin proteins of both pathogenic and non-host species of Pseudomonas syringae. The response to flagellin required a gene closely related to that encoding the Arabidopsis thaliana flagellin receptor that we designated NbFls2. In addition, silencing of NbFls2 led to increased growth of compatible, non-host and non-pathogenic strains of P. syringae. Thus, flagellin perception restricts growth of P. syringae strains on N. benthamiana. Pathogenic bacteria secrete effector proteins into the plant cell to enhance virulence. We tested the ability of several unrelated effectors to suppress PAMP-mediated defences. The effector proteins AvrPto and AvrPtoB, but not AvrRps4, suppressed all responses tested including the hypersensitive response induced by non-host flagellins and the oomycete elicitor INF1. Strikingly, transient expression of avrPto or avrPtoB stimulated the growth of non-pathogenic Agrobacterium tumefaciensin planta, suggesting that multiplication of this species is also restricted by PAMP perception. Unexpectedly, AvrPtoB but not AvrPto required the defence-associated genes Rar1, Sgt1 and Eds1 for suppression. This observation separates the respective mechanisms of the two effectors, and suggests that AvrPtoB may target the defence machinery directly for its suppressive effect.  相似文献   

9.
The majority of cystic fibrosis (CF) patients suffer from chronic respiratory infection with the opportunistic bacterial pathogen Pseudomonas aeruginosa. The virulence of P. aeruginosa is associated with the presence of various extracellular factors, like alginate, elastase, alkaline protease which contribute tissue destruction and assist bacterial invasion. Virulence factor production of P. aeruginosa strains isolated from 46 CF patients followed in two cities in Turkey was detected. Strains were compared genotypically by arbitrarily primed PCR. Antimicrobial susceptibilities to 12 antibiotics were determined by broth microdilution method. Evaluation of virulence factor results revealed that 95.8% of the strains were alginate, 71.7% elastase and 52.1% alkaline protease producers. AP-PCR analysis revealed 35 genotypes indicated almost a complete discrepancy among the strains. The most effective drugs were penems and quinolones. Among aminoglycosides amikacin was the most effective one and a high level resistance to beta lactams was observed. Alginate is the most important virulence factor in the chronic colonisation of CF patients with P. aeruginosa. No evidence for cross infection between patients and for relationship between phenotypes and genotypes of the strains was found.  相似文献   

10.
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic pathogen that can cause fatal infections in immunocompromised hosts. The virulence of P. aeruginosa is associated with the presence of various extracellular factors like elastase and alkaline protease. These enzymes are suggested to contribute to tissue destruction and assist bacterial invasion during infection. Therefore it seems likely that determination of these virulence factors will be an important prognostic marker in the near future especially for follow up of cystic fibrosis patients, to start antimicrobial agents that are directly or indirectly inhibit microbial growth or virulence factor production. Herein, we suggest a simple test procedure to be used in routine laboratories for estimation of elastase and alkaline protease levels and compare them with quantitative methods in the literature. We detected the amount of elastase and alkaline protease in 49 clinical P. aeruginosa isolates by comparing agar plate method and colorimetric assay. The resulting values were in the range reported in the literature and differed from one strain to another(elastase: 0-1390 mg/ml, alkaline protease: 0- 770 mg/ml). Linear relationships were found when assays compared in pairs and significant correlation coefficients were obtained(r>0.788 for alkaline protease, p<0.0001- r>0.926 for elastase, p<0.0001). Our method can be applied in laboratories regardless of the availability of technical equipment.  相似文献   

12.
Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.  相似文献   

13.
After bacterial infection, neutrophils dominate the cellular infiltrate. Their main function is assumed to be killing invading pathogens and resolving the inflammation they cause. Activated neutrophils are also known to release a variety of molecules, including the neutrophil serine proteinases, extracellularly. The release of these proteinases during inflammation creates a proteolytic environment where degradation of different molecules modulates the inflammatory response. Flagellin, the structural component of flagella on many bacterial species, is a virulence factor with a strong proinflammatory activity on epithelial cells and other cell types. In this study we show that both human and mouse neutrophil serine proteinases cleave flagellin from Pseudomonas aeruginosa and other bacterial species. More important, cleavage of P. aeruginosa flagellin by the neutrophil serine proteinases neutrophil elastase and cathepsin G resulted in loss of the biological activity of this virulence factor, as evidenced by the lack of innate host defense gene expression in human epithelial cells. The finding that flagellin is susceptible to cleavage by neutrophil serine proteinases suggests a novel role for these enzymes in the inflammatory response to infection. Not only can these enzymes kill bacteria, but they also degrade their virulence factors to halt the inflammatory response they trigger.  相似文献   

14.
A glycosylation island is a genetic region required for glycosylation. The glycosylation island of flagellin in Pseudomonas syringae pv. tabaci 6605 consists of three orfs: orf1, orf2 and orf3. Orf1 and orf2 encode putative glycosyltransferases, and their deletion mutants, Deltaorf1 and Deltaorf2, exhibit deficient flagellin glycosylation or produce partially glycosylated flagellin respectively. Digestion of glycosylated flagellin from wild-type bacteria and non-glycosylated flagellin from Deltaorf1 mutant using aspartic N-peptidase and subsequent HPLC analysis revealed candidate glycosylated amino acids. By generation of site-directed Ser/Ala-substituted mutants, all glycosylated amino acid residues were identified at positions 143, 164, 176, 183, 193 and 201. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) analysis revealed that each glycan was about 540 Da. While all glycosylation-defective mutants retained swimming ability, swarming ability was reduced in the Deltaorf1, Deltaorf2 and Ser/Ala-substituted mutants. All glycosylation mutants were also found to be impaired in the ability to adhere to a polystyrene surface and in the ability to cause disease in tobacco. Based on the predicted tertiary structure of flagellin, S176 and S183 are expected to be located on most external surface of the flagellum. Thus the effect of Ala-substitution of these serines is stronger than that of other serines. These results suggest that glycosylation of flagellin in P. syringae pv. tabaci 6605 is required for bacterial virulence. It is also possible that glycosylation of flagellin may mask elicitor function of flagellin molecule.  相似文献   

15.
Phagocytosis by neutrophils is the essential step in fighting Pseudomonas infections. The first step in neutrophil recruitment to the site infection is the interaction of P-selectin (on endothelial cells) with P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils. Pseudomonas aeruginosa secretes various proteases that degrade proteins that are essential for host defence, such as elastase and alkaline protease. Here we identify PA0572 of P. aeruginosa as an inhibitor of PSGL-1 and named this secreted hypothetical protease immunomodulating metalloprotease of P. aeruginosa or IMPa. Proteolytic activity was confirmed by cleavage of recombinant and cell-surface expressed PSGL-1. Functional inhibition was demonstrated by impaired PSGL-1-mediated rolling of IMPa-treated neutrophils under flow conditions. Next to PSGL-1, IMPa targets CD43 and CD44 that are also involved in leucocyte homing. These data indicate that IMPa prevents neutrophil extravasation and thereby protects P. aeruginosa from neutrophil attack.  相似文献   

16.
Using a sensitive assay, we observed low levels of an unknown surfactant produced by Pseudomonas syringae pv. syringae B728a that was not detected by traditional methods yet enabled swarming motility in a strain that exhibited deficient production of syringafactin, the main characterized surfactant produced by P. syringae. Random mutagenesis of the syringafactin-deficient strain revealed an acyltransferase with homology to rhlA from Pseudomonas aeruginosa that was required for production of this unidentified surfactant, subsequently characterized by mass spectrometry as 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA). Analysis of other mutants with altered surfactant production revealed that HAA is coordinately regulated with the late-stage flagellar gene encoding flagellin; mutations in genes involved in early flagellar assembly abolish or reduce HAA production, while mutations in flagellin or flagellin glycosylation genes increase its production. When colonizing a hydrated porous surface, the bacterium increases production of both flagellin and HAA. P. syringae was defective in porous-paper colonization without functional flagella and was slightly inhibited in this movement when it lacked surfactant production. Loss of HAA production in a syringafactin-deficient strain had no effect on swimming but abolished swarming motility. In contrast, a strain that lacked HAA but retained syringafactin production exhibited broad swarming tendrils, while a syringafactin-producing strain that overproduced HAA exhibited slender swarming tendrils. On the basis of further analysis of mutants altered in HAA production, we discuss its regulation in Pseudomonas syringae.  相似文献   

17.
Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca(2+) in AP folding and activation. We find that Ca(2+) binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca(2+)-mediated regulation of AP and suggest mechanisms by which Ca(2+) regulates the RTX family of virulence factors.  相似文献   

18.
Both Pseudomonas aeruginosa and Pseudomonas fluorescens secrete a lipase into the extracellular medium. Unlike the lipase of P. aeruginosa, the lipase produced by P. fluorescens does not contain any N-terminal signal sequence. We show that the P. fluorescens lipase is secreted through the signal peptide-independent pathway of the alkaline protease that we previously identified in P. aeruginosa. Secretion of this protease (AprA) is dependent on the presence of three genes located adjacent to the aprA gene, aprD, aprE and aprF. The three secretion functions permit an efficient secretion of P. fluorescens lipase. Inactivation of one of them (AprE) prevented this secretion. In Escherichia coli, the three proteins AprD, AprE, AprF are necessary and sufficient for efficient secretion of lipase to the extracellular medium. The secretion signal is located within the C-terminal part of the lipase sequence and can promote efficient secretion of a passenger protein. Thus the P. fluorescens lipase secretion system belongs to the group of the three-component bacterial ABC-exporter systems.  相似文献   

19.
Secretion of extracellular proteins by Pseudomonas aeruginosa   总被引:8,自引:0,他引:8  
A Lazdunski  J Guzzo  A Filloux  M Bally  M Murgier 《Biochimie》1990,72(2-3):147-156
Pseudomonas aeruginosa is a bacterial species of commercial value secreting numerous extracellular proteins, involved in pathogenesis. Most strains produce at least a lipase, a phospholipase, an alkaline phosphatase, an exotoxin and 2 proteases (elastase and alkaline protease). Various mechanisms for secretion of exoproteins appear to exist in P aeruginosa. Genetic analysis has led to the identification of 2 secretion pathways: i) a "general" secretion pathway, defined by the xcp mutations, which mediates secretion of most extracellular proteins, and; ii) an independent secretion pathway specific for alkaline protease. Our present knowledge on the pathways and components of the secretion machinery in P aeruginosa is reviewed in this article.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号