共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Transformation of the Gram-positive honey bee pathogen, Paenibacillus larvae, by electroporation 总被引:1,自引:0,他引:1
In this study we developed an electrotransformation method for use with the Gram-positive bacterium Paenibacillus larvae-a deadly pathogen of honey bees. Combining multiple Bacillus electrotransformation methods to generate an initial protocol, we then optimized the following parameters for use with P. larvae: cell density of culture at harvest time, contents of the washing/electroporation solution, field strength of the electrical pulse, recovery growth medium, and recovery time period. With the optimized method, we achieved an average transformation efficiency of 1.9x10(5) transformants/mug DNA. The method is substantially different from the only other electrotransformation method for a Paenibacillus species found in the literature. This work should facilitate the study of the several previously discovered natural plasmids of P. larvae, and is a step toward developing a genetic system for this species. 相似文献
3.
Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions
Most Gram-positive bacteria incorporate membrane- or peptidoglycan-attached carbohydrate-based polymers into their cell envelopes. Such cell-wall glycopolymers (CWGs) often have highly variable structures and have crucial roles in protecting, connecting and controlling the major envelope constituents. Further important roles of CWGs in host-cell adhesion, inflammation and immune activation have also been described in recent years. Identifying and harnessing highly conserved or species-specific structural features of CWGs offers excellent opportunities for developing new antibiotics, vaccines and diagnostics for use in the fight against severe infectious diseases, such as sepsis, pneumonia, anthrax and tuberculosis. 相似文献
4.
5.
Varga JJ Nguyen V O'Brien DK Rodgers K Walker RA Melville SB 《Molecular microbiology》2006,62(3):680-694
Bacteria can swim in liquid media by flagellar rotation and can move on surfaces via gliding or twitching motility. One type of gliding motility involves the extension, attachment and retraction of type IV pili (TFP), which pull the bacterium towards the site of attachment. TFP-dependent gliding motility has been seen in many Gram-negative bacteria but not in Gram-positive bacteria. Recently, the genome sequences of three strains of Clostridium perfringens have been completed and we identified gene products involved in producing TFP in each strain. Here we show that C. perfringens produces TFP and moves with an unusual form of gliding motility involving groups of densely packed cells moving away from the edge of a colony in curvilinear flares. Mutations introduced into the pilT and pilC genes of C. perfringens abolished motility and surface localization of TFP. Genes encoding TFP are also found in the genomes of all nine Clostridium species sequenced thus far and we demonstrated that Clostridium beijerinckii can move via gliding motility. It has recently been proposed that the Clostridia are the oldest Eubacterial class and the ubiquity of TFP in this class suggests that a Clostridia-like ancestor possessed TFP, which evolved into the forms seen in many Gram-negative species. 相似文献
6.
The opportunistic and facultative intracellular pathogenic bacterium Listeria monocytogenes causes a rare but severe foodborne disease called listeriosis, the outcome of which can be fatal. The infection cycle and key virulence factors are now well characterized in this species. Nonetheless, this knowledge has not prevented the re-emergence of listeriosis, as recently reported in several European countries. Listeria monocytogenes is particularly problematic in the food industry since it can survive and multiply under conditions frequently used for food preservation. Moreover, this foodborne pathogen also forms biofilms, which increase its persistence and resistance in industrial production lines, leading to contamination of food products. Significant differences have been reported regarding the ability of different isolates to form biofilms, but no clear correlation can be established with serovars or lineages. The architecture of listerial biofilms varies greatly from one strain to another as it ranges from bacterial monolayers to the most recently described network of knitted chains. While the role of polysaccharides as part of the extracellular matrix contributing to listerial biofilm formation remains elusive, the importance of eDNA has been demonstrated. The involvement of flagella in biofilm formation has also been pointed out, but their exact role in the process remains to be clarified because of conflicting results. Two cell-cell communication systems LuxS and Agr have been shown to take part in the regulation of biofilm formation. Several additional molecular determinants have been identified by functional genetic analyses, such as the (p)ppGpp synthetase RelA and more recently BapL. Future directions and questions about the molecular mechanisms of biofilm formation in L. monocytogenes are further discussed, such as correlation between clonal complexes as revealed by MLST and biofilm formation, the swarming over swimming regulation hypothesis regarding the role of the flagella, and the involvement of microbial surface components recognizing adhesive matrix molecules in the colonization of abiotic and biotic surfaces. 相似文献
7.
Toshihiro Ihara Yoshinobu Sato Hiroshi Shimada Akinori Jyo 《Nucleosides, nucleotides & nucleic acids》2013,32(9):1084-1096
The flexible polypyridine ligand, 2,2′:6′,2″-terpyridine (terpy), was built into the backbone of oligonucleotides to form DNA conjugates. The terpy unit functioned as a good loop when the conjugates formed the bimolecular triplexes with complementary oligopurine. The triplex structure was destabilized by the specific interaction with divalent transition metal ions (Cu2+, Zn2+, and Fe2+), in particular Cu2+ ions. This ion destabilized one of the triplexes by 4.2 kcalmol?1 or made the triplex formation constant less than 1/103 at 298 K. This result is attributed to the substantial turbulence of the terminal structure of the triplexes. 相似文献
8.
The flexible polypyridine ligand, 2,2':6',2(')-terpyridine (terpy), was built into the backbone of oligonucleotides to form DNA conjugates. The terpy unit functioned as a good loop when the conjugates formed the bimolecular triplexes with complementary oligopurine. The triplex structure was destabilized by the specific interaction with divalent transition metal ions (Cu(2+), Zn(2+), and Fe(2+)), in particular Cu(2+) ions. This ion destabilized one of the triplexes by 4.2 kcalmol(-1) or made the triplex formation constant less than 1/10(3) at 298 K. This result is attributed to the substantial turbulence of the terminal structure of the triplexes. 相似文献
9.
10.
Catherine A. Wakeman 《Journal of molecular biology》2009,392(3):723-13405
Riboswitches are regulatory RNAs that control downstream gene expression in response to direct association with intracellular metabolites or metals. Typically, riboswitch aptamer domains bind to a single small-molecule metabolite. In contrast, an X-ray crystallographic structural model for the M-box riboswitch aptamer revealed the absence of an organic metabolite ligand but the presence of at least six tightly associated magnesiums. This observation agrees well with the proposed role of the M-box riboswitch in functioning as a sensor of intracellular magnesium, although additional nonspecific metal interactions are also undoubtedly required for these purposes. To gain greater functional insight into the metalloregulatory capabilities of M-box RNAs, we sought to determine whether all or a subset of the RNA-chelated magnesium ions were required for riboswitch function. To accomplish this task, each magnesium-binding site was simultaneously yet individually perturbed through random incorporation of phosphorothioate nucleotide analogues, and RNA molecules were investigated for their ability to fold in varying levels of magnesium. These data revealed that all of the magnesium ions observed in the structural model are important for magnesium-dependent tertiary structure formation. Additionally, these functional data revealed a new core of potential metal-binding sites that are likely to assist formation of key tertiary interactions and were previously unobserved in the structural model. It is clear from these data that M-box RNAs require specific binding of a network of metal ions for partial fulfillment of their metalloregulatory functions. 相似文献
11.
12.
Hyaluronidases of Gram-positive bacteria 总被引:5,自引:0,他引:5
Bacterial hyaluronidases, enzymes capable of breaking down hyaluronate, are produced by a number of pathogenic Gram-positive bacteria that initiate infections at the skin or mucosal surfaces. Since reports of the hyaluronidases first appeared, there have been numerous suggestions as to the role of the enzyme in the disease process. Unlike some of the other more well studied virulence factors, much of the information on the role of hyaluronidase is speculative, with little or no data to substantiate proposed roles. Over the last 5 years, a number of these enzymes from Gram-positive organisms have been cloned, and the nucleotide sequence determined. Phylogenetic analysis, using the deduced amino acid sequences of the Gram-positive hyaluronidases, suggests a relatedness among some of the enzymes. Molecular advances may lead to a more thorough understanding of the role of hyaluronidases in bacterial physiology and pathogenesis. 相似文献
13.
Chronic disease in the Mojave desert tortoise: Host physiology and recrudescence obscure patterns of pathogen transmission 下载免费PDF全文
Franziska C. Sandmeier K. Nichole Maloney C. Richard Tracy David Hyde Hamid Mohammadpour Ron Marlow Sally DuPré Kenneth Hunter 《Ecology and evolution》2017,7(24):10616-10629
A seminatural, factorial‐design experiment was used to quantify dynamics of the pathogen Mycoplasma agassizii and upper respiratory tract disease in the Mojave desert tortoise (Gopherus agassizii) over 2 years. Groups of initially healthy animals were separated into serologically positive (seropositive), seronegative, and artificially infected groups and paired into 23 pens. We found no evidence of long‐term immune protection to M. agassizii or of immunological memory. Initially seronegative, healthy tortoises experienced an equal amount of disease when paired with other seronegative groups as when paired with seropositive and artificially infected groups—suggesting that recrudescence is as significant as transmission in introducing disease in individuals in this host–pathogen system. Artificially infected groups of tortoises showed reduced levels of morbidity when paired with initially seronegative animals—suggesting either a dilution effect or a strong effect of pathogen load in this system. Physiological dynamics within the host appear to be instrumental in producing morbidity, recrudescence, and infectiousness, and thus of population‐level dynamics. We suggest new avenues for studying diseases in long‐lived ectothermic vertebrates and a shift in modeling such diseases. 相似文献
14.
15.
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function. 相似文献
16.
DNA base composition of Gram-positive cocci 总被引:10,自引:0,他引:10
17.
The structural biology of Gram-positive cell surface adhesins is an emerging field of research, whereas Gram-negative pilus assembly and anchoring have been extensively investigated and are well understood. Gram-positive surface proteins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and individual proteins that assemble into long, hair-like organelles known as pili have similar features at the primary sequence level as well as at the tertiary structural level. Some of these conserved features are essential for their transportation from the cytoplasm and for cell wall anchoring. More importantly, the MSCRAMMs and the individual pilins are assembled with building blocks that are variants of structural modules used for human immunoglobulins. MSCRAMMs target the host's extracellular matrix proteins, such as collagen, fibrinogen, and fibronectin, and they have received considerable attention from structural biologists in the last decade, who have primarily been interested in understanding their interactions with host tissue. The recent focus is on the newly discovered pili of Gram-positive bacteria, and in this review, we highlight the advances in understanding of the individual pilus constituents and their associations and stress the similarities between the individual pilins and surface proteins. 相似文献
18.
Membrane transitions in Gram-positive bacteria 总被引:5,自引:0,他引:5
19.
Surface proteins of Gram-positive pathogens play various key roles in pathogenicity. Therefore, these proteins are of great interest in terms of understanding the infection process and have potential as targets for therapy. A major mechanism for the surface display of proteins by Gram-positive bacteria is sortase-mediated covalent attachment to the cell wall. The importance of sortase enzymes in the virulence of several pathogens is now becoming apparent, as are some of the more detailed workings of the enzyme and anchoring pathway. These recent advances are discussed. 相似文献
20.
Frass from the greater wax moth, Galleria mellonella, obtained from feral colonies of honey bees, Apis mellifera; from domesticated (managed) honey bee colonies; and from a laboratory culture of the wax moth was sampled for Gram-positive cocci. One hundred twenty-three of these organisms were isolated and identified. Frass from domesticated colonies yielded only one isolate. Equal numbers of isolates (61) were obtained from frass from feral bee colonies and from the wax moth culture. Catalase-negative cocci were predominant in frass from feral colonies, whereas catalase-positive cocci were the most common isolates from frass from the wax moth culture. Catalase-positive cocci were identified as Staphylococcus epidermidis and Micrococcus sp. Catalase-negative cocci were Streptococcus faecalis var. faecalis and S. faecium. These results are discussed in relation to the rarity of Gram-positive cocci associated with honey bees, pollen, and nectar in Arizona and the frequency of association with honey bees and wax moth frass of bacteria resembling Arthrobacter spp. that appear as Gram-positive cocci during one stage of the life cycle. 相似文献