首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane skeletons can be characterized as cytoskeletal structures lying parallel to the bilayer part of cellular and organelle membranes. Typical examples are spectrin network and actin-myosin cortex. We approach the problem of elucidating the function of membrane skeletons by theoretically analyzing mechanical models of the cellular behavior. Membranes of different physical and chemical properties are considered. In erythrocytes and some organelles membrane bilayers are smooth and simply underlaid or overlaid by membrane skeletons. It is argued that there the role of a membrane skeleton is, either, to keep the membrane composition laterally homogeneous as it is in the case of the erythrocyte, or, that it is involved in the processes of the lateral separation of integral membrane proteins as it is happening in the case of some intermediate steps of the vesicular membrane trafficking. In the second type of membranes the bilayer part is ruffled and folded, and there the membrane skeletons play a role in the determination of the cortical tension. Here we explore in more detail the mechanical behavior of a cell with such properties of its boundary. The shape transformations are described which occur under the influence (i) of different external forces, i.e., when an originally spherical cell is aspirated into the micropipette or when such a cell is adsorbed on a flat surface, and (ii) of different internal forces on the cell boundary exerted by the cytoskeletal elements.  相似文献   

2.
This paper studies change of membrane shape at the initial stage of the fusion process due to the fusion proteins inducing spontaneous curvature in the membrane. As protein inclusions are embedded into the membrane, a highly curved surface forms in the center of the membrane; it facilitates the formation of short-lived hydrophobic defects and leads to the merger of the contact monolayers of the membranes. Membrane is considered as continuous liquid-crystal medium subject to elastic deformations. One deformational mode of splay is taken into account; energy is calculated in the quadratic approximation on this deformation. In case of positive spontaneous curvature induced by the protein there is no bulge on the top of the membrane despite high deviation of membrane shape from the equilibrium state. In case of negative spontaneous curvature a bulge is formed and its height and curvature increase with the increase of the membrane curvature in the initial state.  相似文献   

3.
Recent research has shown that the inner nuclear membrane is a site for regulation of signal transduction from the plasma membrane to the nucleus. This has coincided with discoveries showing that mutations in extrinsic and intrinsic inner nuclear membrane proteins cause a variety of inherited diseases. In most instances, the mechanisms by which mutations in inner nuclear membrane proteins cause disease are not understood. In at least one case, however, an alteration in signal transduction appears to underlie disease pathogenesis.  相似文献   

4.
Previous measurements have shown that the electrical properties of the squid axon membrane are approximately equivalent to those of a circuit containing a capacity shunted by an inductance and a rectifier in series. Selective ion permeability of a membrane separating two electrolytes may be expected to give rise to the rectification. A quasi-crystalline piezoelectric structure of the membrane is a plausible explanation of the inductance. Some approximate calculations of behavior of an axon with these membrane characteristics have been made. Fair agreement is obtained with the observed constant current subthreshold potential and impedance during the foot of the action potential. In a simple case a formal analogy is found between the calculated membrane potential and the excitability defined by the two factor formulations of excitation. Several excitation phenomena may then be explained semi-quantitatively by further assuming the excitability proportional to the membrane potential. Some previous measurements and subthreshold potential and excitability observations are not consistent with the circuit considered and indicate that this circuit is only approximately equivalent to the membrane.  相似文献   

5.
The interdependence of the lateral distribution of molecules which are embedded in a membrane (such as integral membrane proteins) and the shape of a cell with no internal structure (such as phospholipid vesicles or mammalian erythrocytes) has been studied. The coupling of the lateral distribution of the molecules and the cell shape is introduced by considering that the energy of the membrane embedded molecule at a given site of the membrane depends on the curvature of the membrane at that site. Direct interactions between embedded molecules are not considered. A simple expression for the interaction of the membrane embedded molecule with the local membrane curvature is proposed. Starting from this interaction, the consistently related expressions for the free energy and for the distribution function of the embedded molecules are derived. The equilibrium cell shape and the corresponding lateral distribution of the membrane embedded molecules are determined by minimization of the membrane free energy which includes the free energy of the membrane embedded molecules and the membrane elastic energy. The resulting inhomogeneous distribution of the membrane embedded molecules affects the cell shape in a nontrivial manner. In particular, it is shown that the shape corresponding to the absolute energy minimum at given cell volume and membrane area may be elliptically non-axisymmetric, in contrast to the case of a laterally homogeneous membrane where it is axisymmetric.  相似文献   

6.
Cytoplasmic membrane vesicles prepared by lysis of Escherichia coli W 3110 spheroplasts in a French press at 0 degrees C are heterogeneous with respect to density due to membrane protein aggregation as a result of lateral phase separation of membrane phospholipids and to the presence of more or less outer membrane. These different vesicle classes can be separated on isopycnic density gradients. Assays for various membrane-associated functions show that the membranes differ not only with respect to density and structure but also with respect to function. The proline transport system (as detected by uptake experiments with the artificial electron donor ascorbate-phenazine methosulfate) shows maximal activities in membrane fractions that have considerably higher densities than the normal cytoplasmic membrane. This is always the case, whether vesicles are isolated from membranes that exhibit a temperature-induced protein aggregation or not. A correlation between high proline transport activity and the presence of vesicles with double membranes (consisting of outer and inner membrane) has been established. The possibility that the outer membrane protects the transport system in the cytoplasmic membrane during the isolation of vesicles is discussed.  相似文献   

7.
Membrane vesicle preparations are very appropriate material for studying the topology of glycoproteins integrated into specialized plasma membrane domains of polarized cells. Here we show that the flow cytometric measurement of fluorescence energy transfer used previously to study the relationship between surface components of isolated cells can be applied to membrane vesicles. The fluorescein and rhodamine derivatives of a monoclonal antibody (4H7.1) that recognized one common epitope of the rabbit and pig aminopeptidase N were used for probing the oligomerization and conformational states of the enzyme integrated into the brush border and basolateral membrane vesicles prepared from rabbit and pig enterocytes. The high fluorescent energy transfer observed in the case of pig enzyme integrated into both types of vesicles and in the case of the rabbit enzyme integrated into basolateral membrane vesicles agreed very well with the existence of a dimeric organization, which was directly demonstrated by cross-linking experiments. Although with the latter technique we observed that the rabbit aminopeptidase was also dimerized in the brush border membrane, no energy transfer was detected with the corresponding vesicles. This indicates that the relative positions of two associated monomers differ depending on whether the rabbit aminopeptidase is transiently integrated into the basolateral membrane or permanently integrated into the brush border membrane. Cross-linking of aminopeptidases solubilized by detergent and of their ectodomains liberated by trypsin showed that only interactions between anchor domains maintained the dimeric structure of rabbit enzyme whereas interactions between ectodomains also exist in the pig enzyme. This might explain why the noticeable change in the organization of the two ectodomains observed in the case of rabbit aminopeptidase N does not occur in the case of pig enzyme.  相似文献   

8.
Proteomic analysis of membrane proteins is a promising approach for the identification of novel drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solublization of membrane proteins are encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Frequently, unknown proteins are identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict the presence of transmembrane domains. This review also presents these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.  相似文献   

9.
Proteomic analysis of membrane proteins is a promising approach for the identification of novel drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solublization of membrane proteins are encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Frequently, unknown proteins are identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict the presence of transmembrane domains. This review also presents these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.  相似文献   

10.
We have observed the opening and closing of single batrachotoxin (BTX)-modified sodium channels in neuroblastoma cells using the patch-clamp method. The conductance of a single BTX-modified channel is approximately 10 pS. At a given membrane potential, the channels are open longer than are normal sodium channels. As is the case for normal sodium channels, the open dwell times become longer as the membrane is depolarized. For membrane potentials more negative than about -70 mV, histograms of both open-state dwell times and closed-state dwell times could be fit by single exponentials. For more depolarized potentials, although the open-state histograms could still be fit by single exponentials, the closed-state histograms required two exponentials. This data together with macroscopic voltage clamp data on the same system could be accounted for by a three-state closed-closed-open model with transition rates between these states that are exponential functions of membrane potential. One of the implications of this model, in agreement with experiment, is that there are always some closed BTX-modified sodium channels, regardless of membrane potential.  相似文献   

11.
Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function in vivo. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than [Formula: see text] in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.  相似文献   

12.
B G Tenchov 《Biofizika》1975,20(3):437-440
A theory of ionic transport through membranes in which the phospholipid molecules play the role of ion-carriers is developed. The transport of ions is accompanied by a membrane asymmetry. Expressions for stationary-state ion-fluxes in the case of one sort of ions transport, and in the case of coupled transport of ions of two sorts, are obtained. In the latter case near equilibrium the cross-coefficients are equal in accordance with Onsager's law. The possible role of phospholipids as ioncarriers in native membranes is discussed.  相似文献   

13.
The current notion of biological membranes encompasses a very complex structure, made of dynamically changing compartments or domains where different membrane components partition. These domains have been related to important cellular functions such as membrane sorting, signal transduction, membrane fusion, neuronal maturation, and protein activation. Many reviews have dealt with membrane domains where lipid-lipid interactions direct their formation, especially in the case of raft domains, so in this review we considered domains induced by integral membrane proteins. The nature of the interactions involved and the different mechanisms through which membrane proteins segregate lipid domains are presented, in particular with regard to those induced by the nAChR. It may be concluded that coupling of favourable lipid-lipid and lipid-protein interactions is a general condition for this phenomenon to occur.  相似文献   

14.
Extraction can successfully be used for in-situ alcohol recovery in butanol fermentations to increase the substrate conversion. An advantage of extraction over other recovery methods may be the high capacity of the solvent and the high selectivity of the alcohol/water separation. Extraction, however, is a comprehensive operation, and the design of an extraction apparatus can be complex. The aim of this study is to assess the practical applicability of liquid-liquid extraction and membrane solvent extraction in butanol fermentations. In this view various aspects of extraction processes were investigated.Thirty-six chemicals were tested for the distribution coefficient for butanol, the selectivity of alcohol/water separation and the toxicity towards Clostridia. Convenient extractants were found in the group of esters with high molar mass.Liquid-liquid extraction was carried out in a stirred fermenter and a spray column. The formation of emulsions and the fouling of the solvent in a fermentation broth causes problems with the operation of this type of equipment. With membrane solvent extraction, in which the solvent is separated from the broth by a membrane, a dispersion-free extraction is possible, leading to an easy operation of the equipment. In this case the mass transfer in the membrane becomes important.With membrane solvent extraction the development of a process is emphasized in which the extraction characteristics of the solvent are combined with the property of silicone rubber membranes to separate butanol from water. In the case of apolar solvents with a high molar mass, the characteristics of the membrane process are determined completely by the solvent. In the case of polar solvents (e.g. ethylene glycol), the permselectivity of the membrane can profitably be used. This concept leads to a novel type of extraction process in which alcohol is extracted with a water-soluble solvent via a hydrophobic semipermeable membrane. This extraction process has been investigated for the recovery of butanol and ethanol from water. A major drawback in all processes with membrane solvent extraction was the permeation of part of the solvent to the aqueous phase.The extraction processes were coupled to batch, fed batch and continuous butanol fermentations to affirm the applicability of the recovery techniques in the actual process. In the batch and fed batch fermentations a three-fold increase in the substrate consumption could be achieved, in the continuous fermentation about 30% increase.  相似文献   

15.
Cytoplasmic membrane vesicles prepared by lysis of Escherichia coli W 3110 spheroplasts in a French press at 0° C are heterogeneous with respect to density due to membrane protein aggregation as a result of lateral phase separation of membrane phospholipids and to the presence of more or less outer membrane. These different vesicle classes can be separated on isopycnic density gradients. Assays for various membrane-associated functions show that the membranes differ not only with respect to density and structure but also with respect to function.The proline transport system (as detected by uptake experiments with the artificial electron donor ascorbate-phenazine methosulfate) shows maximal activities in membrane fractions that have considerably higher densities than the normal cytoplasmic membrane. This is always the case, whether vesicles are isolated from membranes that exhibit a temperature-induced protein aggregation or not. A correlation between high proline transport activity and the presence of vesicles with double membranes (consisting of outer and inner membrane) has been established. The possibility that the outer membrane protects the transport system in the cytoplasmic membrane during the isolation of vesicles is discussed.  相似文献   

16.
We propose a stochastic model for the firing activity of a neuronal unit. It includes the decay effect of the membrane potential in absence of stimuli, and the occurrence of time-varying excitatory inputs governed by a Poisson process. The sample-paths of the membrane potential are piecewise exponentially decaying curves with jumps of random amplitudes occurring at the input times. An analysis of the probability distributions of the membrane potential and of the firing time is performed. In the special case of time-homogeneous stimuli the firing density is obtained in closed form, together with its mean and variance.  相似文献   

17.
Summary The a-c electrical properties of bipolar membranes separating equal strength solutions of the same uni-univalent electrolyte are analyzed for the case where both ions have equal mobilities. Two membrane models are treated. In one, the fixed-charge density is assumed to be constant throughout the membrane. In the other, the membrane is regarded as comprising an array of pores separated by walls through which the fixed charge is spread uniformly. Experimental results are reported for the a-c electrical properties of a bipolar membrane prepared from a single polyolephine sheet and immersed in KCl solutions of various concentrations. It is found that the data can be interpreted using the pore model.  相似文献   

18.
Using a method they developed, Stamatoff and Krimm (1976) have phased swelling data from nerve myelin. Although most phases agree with those I determined previously, there are a few differences. In this letter the two different phasings, theirs and my own, are used to compute the corresponding electron-density profiles, which are then closely compared. For both phasings, small differences are seen in the membrane profile at different degrees of swelling. The explanation that these differences are due simply to errors in measuring intensity is shown to be quite improbable; thus the differences indicate a real change in the profile. It follows that the assumption of a constant membrane profile appears to be invalid in the case of myelin swelling. The differences therefore are assumed to indicate a real change in the profile. It is shown that this change can be attributed consistently to interdigitation of protein molecules at the surfaces of neighboring membranes, while the membrane structure itself remains unchanged. In this case, valid phases still can be determined by swelling, but the phases determined by Stamatoff and Krimm are not valid.  相似文献   

19.
Mitochondria possess a semipermeable membrane with properties similar to the cell membrane. Despite the presence of a limiting membrane, mitochondria swell approximately 4 to 5 times their original volume without lysis or loss of internal solute. For this reason, it has been argued that the membrane might be convoluted. The present kinetic study of the permeability of isolated mitochondria was undertaken to clarify this question. A photometric method described previously was used. In the case of highly lipid soluble penetrants, the results suggest that neither the permeability nor the surface area available for penetration varies significantly during considerable swelling. These results may be interpreted to mean that the mitochondrial membrane is convoluted. For highly polar compounds, the permeability of the membrane also remains unchanged during swelling, but the surface area available to penetration increases. These results may be interpreted to mean that in this latter case, the surface of the convolutions becomes available only after they are unfolded by swelling. The simplest model that can explain the permeability properties of this membrane consists of a bimolecular lipid layer where the inner monomolecular layer is convoluted.  相似文献   

20.
It has previously been shown by different investigators that the excitable membrane shows a resonant sensitivity to periodic external perturbations, but its Q-factor is, as a rule, low. The present paper analyses the possible ways of increasing the membrane Q, using a model of the Hodgkin-Huxley type. It is found, in particular, that it can be increased considerably by modulating periodically the membrane capacitance or the activation and inactivation rate constants of ionic channels, with a frequency of about 2 fo (fo being the fundamental frequency of damped oscillations in the membrane), the extent of modulation not exceeding the critical value 2/Q. In this case, a significant parametric amplification of the membrane current takes place. If the modulation coefficient is above 2/Q, the membrane can display a parametric resonance that causes stable self-oscillations in the potential with a frequency approximately fo. The conditions for the realization of parametric amplification and resonance in biological membranes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号