首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S12 and 16S rRNA, provide a pathway for the signaling of codon recognition to EF-Tu. Three novel amino acid substitutions, H76R, R37C, and K53E in Thermus thermophilus ribosomal protein S12, confer resistance to streptomycin. The streptomycin-resistance phenotypes of H76R, R37C, and K53E are all abolished by the mutation A375T in EF-Tu. A375T confers resistance to kirromycin, an antibiotic freezing EF-Tu in a GTPase activated state. H76 contacts aminoacyl-tRNA in ternary complex with EF-Tu and GTP, while R37 and K53 are involved in the conformational transition of the 30S subunit occurring upon codon recognition. We propose that codon recognition and domain closure of the 30S subunit are signaled through aminoacyl-tRNA to EF-Tu via these S12 residues.  相似文献   

2.
Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites   总被引:63,自引:0,他引:63  
D Moazed  H F Noller 《Cell》1989,57(4):585-597
Three sets of conserved nucleotides in 23 rRNA are protected from chemical probes by binding of tRNA to the ribosomal A, P, and E sites, respectively. They are located almost exclusively in domain V, primarily in or adjacent to the loop identified with the peptidyl transferase function. Some of these sites are also protected by antibiotics such as chloramphenicol, which could explain how these drugs interfere with protein synthesis. Certain tRNA-dependent protections are abolished when the 3'-terminal A or CA or 2',3'-linked acyl group is removed, providing direct evidence for the interaction of the conserved CCA terminus of tRNA with 23S rRNA. When the EF-Tu.GTP.aminoacyl-tRNA ternary complex is bound to the ribosome, no tRNA-dependent A site protections are detected in 23S rRNA until EF-Tu is released. Thus, EF-Tu prevents interaction of the 3' terminus of the incoming aminoacyl-tRNA with the peptidyl transferase region of the ribosome during anticodon selection, thereby permitting translational proofreading.  相似文献   

3.
The interaction of the polypeptide chain elongation factor Tu (EF-Tu) with the antibiotic kirromycin and tRNA has been studied by measuring the extent of protein modification with N-tosyl-L-phenylalanine chloromethylketone (TPCK) and N-ethylmaleimide (NEM). Kirromycin protects both EF-Tu.GDP and EF-Tu.GTP against modification with TPCK. Binding of aminoacyl-tRNA added at increasing concentrations to a solution of 40 microM EF-Tu.GDP.kirromycin complex re-exposes the TPCK target site on the protein. However, when the aminoacyl-tRNA concentration is raised beyond 20 microM, TPCK labeling drops again and is blocked completely at approximately 300 microM aminoacyl-tRNA. By contrast, addition of uncharged tRNA or N- acetylaminoacyl -tRNA enhances TPCK labeling of the protein over the entire tRNA concentration range studied. These data strongly suggest that kirromycin induces in EF-Tu.GDP an additional tRNA binding site that can bind uncharged tRNA, aminoacyl-tRNA, and N- acetylaminoacyl -tRNA. Support for this assumption is provided by measuring the modification of EF-Tu.GDP with the sulfhydryl reagent NEM. Moreover, NEM modification also indicates an additional tRNA binding site on EF-Tu.GTP.kirromycin, which could not be detected with TPCK. Mapping of the tryptic peptides of EF-Tu.GDP labeled with [14C]TPCK revealed only one target site for this agent, i.e., cysteine-81. Modification occurred at the same site in the presence and in the absence of kirromycin and uncharged tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
氨酰-tRNA合成酶对tRNA的识别   总被引:1,自引:0,他引:1  
氨酰-tRNA合成酶(aaRS)与tRNA的相互作用保证了蛋白质生物合成的忠实性. 氨酰-tRNA合成酶对tRNA识别的专一性依赖于aaRS特定的催化结构域和tRNA分子特异的三级结构构象. 反密码子和接受茎(包括73位)在大多数aaRS对tRNA分子的识别过程中起着关键作用, 其他部位如可变口袋、可变(茎)环等, 甚至修饰核苷酸对于一些识别过程也有重要作用.  相似文献   

5.
Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed.  相似文献   

6.
Elongation factor EF-Tu (Mr approximately equal to 50 000) and elongation factor EF-G (Mr approximately equal to 78 000) were isolated from Bacillus stearothermophilus in a homogeneous form. The ability of EF-Tu to participate in protein synthesis is rapidly inactivated by N-tosyl-L-phenyl-alanylchloromethane (Tos-PheCH2Cl). EF-Tu X GTP is more susceptible to the inhibition by Tos-PheCH2Cl than is EF-Tu X GDP. Tos-PheCH2Cl forms a covalent equimolar complex with the factor by reacting with a cysteine residue in its molecule. The labelling of EF-Tu by the reagent irreversibly destroys its ability to bind aminoacyl-tRNA, which in turn protects the protein from this inactivation. This indicates that the modification of EF-Tu by Tos-PheCH2Cl occurs at the aminoacyl-tRNA binding site of the protein. To identify and characterize the site of aminoacyl-tRNA binding in EF-Tu, the factor was labelled with [14C]Tos-PheCH2Cl, digested with trypsin, the resulting peptides were separated by high-performance liquid chromatography and the sequence of the radioactive peptide was determined. The peptide has identical structure with an Escherichia coli EF-Tu tryptic peptide comprising the residues 75-89 and the Tos-PheCH2Cl-reactive cysteine at position 81 [Jonák, J., Petersen, T. E., Clark, B. F. C. and Rychlík, I. (1982) FEBS Lett. 150, 485-488]. Experiments on photo-oxidation of EF-Tu by visible light in the presence of rose bengal dye showed that there are apparently two histidine residues in elongation factor Tu from B. stearothermophilus which are essential for the interaction with aminoacyl-tRNA. This is clearly reminiscent of a similar situation in E. coli EF-Tu [Jonák, J., Petersen, T. E., Meloun, B. and Rychlík, I. (1984) Eur. J. Biochem. 144, 295-303]. Our results provide further evidence for the conserved nature of the site of aminoacyl-tRNA binding in elongation factor EF-Tu and show that Tos-PheCH2Cl reagent might be a favourable tool for the identification of the site in the structure of prokaryotic EF-Tus.  相似文献   

7.
Eukaryotic elongation factor 1 alpha (EF-1 alpha) binds all the aminoacyl-tRNAs except the initiator tRNA in a GTP-dependent manner. While the GTP binding site is delineated by the three GTP binding consensus elements, less is known about the aminoacyl-tRNA binding sites. In order to better understand this site, we have initiated cross-linking and protease mapping studies of the EF-1 alpha-GTP-aminoacyl-tRNA complex. Two different chemical cross-linking reagents, trans-diaminedichloroplatinum(II) and diepoxybutane, were used to cross-link four different aminoacyl-tRNA species to EF-1 alpha. A series of peptides were obtained, located predominantly in domains II and III. The ability of aminoacyl-tRNA to protect protease digestion sites was also monitored, and domain II was found to be protected from digestion by aminoacyl-tRNA. Last, an aminoacyl-tRNA analog with a reactive group on the aminoacyl side chain, N epsilon-bromoacetyl-Lys-tRNA, was cross-linked to EF-1 alpha. This reagent cross-liked to histidine 296 in a GTP-dependent manner and thus localizes the aminoacyl group adjacent to domain II. A model is developed for aminoacyl-tRNA binding to EF-1 alpha based on its similarity to the prokaryotic factor EF-Tu, for which an x-ray crystal structure is available.  相似文献   

8.
The emergence of polypeptide catalysts for amino acid activation, the slowest step in protein synthesis, poses a significant puzzle associated with the origin of biology. This problem is compounded as the 20 contemporary aminoacyl-tRNA synthetases belong to two quite distinct families. We describe here the use of protein design to show experimentally that a minimal class I aminoacyl-tRNA synthetase active site might have functioned in the distant past. We deleted the anticodon binding domain from tryptophanyl-tRNA synthetase and fused the discontinuous segments comprising its active site. The resulting 130 residue minimal catalytic domain activates tryptophan. This residual catalytic activity constitutes the first experimental evidence that the conserved class I signature sequences, HIGH and KMSKS, might have arisen in-frame, opposite motifs 2 and 1 from class II, as complementary sense and antisense strands of the same ancestral gene.  相似文献   

9.
Bouvardain is an antitumor drug that inhibits protein synthesis in intact eukaryotic cells and cell-free systems. Our present studies have shown that bouvardin acts at the level of the 80 S ribosome in a site somehow involved with the interaction of EF1 and EF2. Indeed bouvardin inhibits EF1-dependent binding of aminoacyl-tRNA and EF2-dependent translocation of peptidyl-tRNA but does not affect the non-enzymic translocation since this relation does not require EF2. The site of the 80 S ribosome involved in the interaction with bouvardin appears to be independent from the cycloheximide and the cryptopleurine binding sites since yeast mutants resistant to cycloheximide or cryptopleurine are sensitive to bouvardin.  相似文献   

10.
Occludin is a protein component of the membrane domain of tight junctions, and has been shown to be phosphorylated in vivo in cultured cells and Xenopus laevis embryos. However, nothing is known about the identity of specific occludin kinase(s) and occludin phosphorylation site(s). Furthermore, nothing is known about the interaction of occludin with cingulin, a cytoplasmic plaque component of tight junctions. Here we report the isolation and sequencing of a complete X. laevis occludin cDNA, and experiments aimed at mapping X. laevis occludin in vitro phosphorylation site(s) and characterizing occludin interaction with cingulin. The sequence of Xenopus occludin is homologous to that of occludins from other species, with identities ranging from 41% to 58%. Bacterially expressed domain E of Xenopus occludin (amino acids 247-493) was a good substrate for protein kinase CK2 (stoichiometry 10.8%, Km 8.4 microM) but not for CK1 kinase, protein kinase A, cdc2 kinase, MAP kinase or syk kinase. Residues Thr375 and Ser379 were identified as potential CK2 phosphorylation sites in this region based on sequence analysis. Mutation of Ser379 to aspartic acid or alanine reduced phosphorylation by CK2 by approximately 50%, and double mutation of Ser379 into aspartic acid and Thr375 into aspartic acid essentially abolished phosphorylation. Glutathione S-transferase (GST) pull-down experiments using extracts of Xenopus A6 epithelial cells showed that constructs of GST fused to wild-type and mutant forms of the C-terminal region of X. laevis occludin associate with several polypeptides, and immunoblot analysis showed that one of these polypeptides is cingulin. GST pull-down experiments using in vitro translated, full-length Xenopus cingulin indicated that cingulin interacts directly with the C-terminal region of occludin.  相似文献   

11.
M V Rodnina  R Fricke  L Kuhn    W Wintermeyer 《The EMBO journal》1995,14(11):2613-2619
The mechanisms by which elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA to the A site of the ribosome and, in particular, how GTP hydrolysis by EF-Tu is triggered on the ribosome, are not understood. We report steady-state and time-resolved fluorescence measurements, performed in the Escherichia coli system, in which the interaction of the complex EF-Tu.GTP.Phe-tRNAPhe with the ribosomal A site is monitored by the fluorescence changes of either mant-dGTP [3'-O-(N-methylanthraniloyl)-2-deoxyguanosine triphosphate], replacing GTP in the complex, or of wybutine in the anticodon loop of the tRNA. Additionally, GTP hydrolysis is measured by the quench-flow technique. We find that codon-anticodon interaction induces a rapid rearrangement within the G domain of EF-Tu around the bound nucleotide, which is followed by GTP hydrolysis at an approximately 1.5-fold lower rate. In the presence of kirromycin, the activated conformation of EF-Tu appears to be frozen. The steps following GTP hydrolysis--the switch of EF-Tu to the GDP-bound conformation, the release of aminoacyl-tRNA from EF-Tu to the A site, and the dissociation of EF-Tu-GDP from the ribosome--which are altogether suppressed by kirromycin, are not distinguished kinetically. The results suggest that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements resulting in a conformational change of EF-Tu, possibly involving the effector region, which, in turn, triggers GTP hydrolysis.  相似文献   

12.
Previous work has demonstrated the ability of the NG2 proteoglycan, a component of microvascular pericytes, to stimulate endothelial cell motility and morphogenesis. This function of NG2 depends on formation of a complex with galectin-3 and alpha3beta1 integrin to stimulate integrin-mediated transmembrane signaling. In addition, the co-expression of galectin-3 and NG2 in A375 melanoma cells suggests that the malignant properties of these cells may be affected by interaction between the two molecules. Here, we extend the theme of co-expression and interaction of NG2 and galectin-3 to human glioma cells. We also establish a molecular basis for the NG2/galectin-3 interaction. The C-terminal carbohydrate recognition domain of galectin-3 is responsible for binding to the NG2 core protein. Within the NG2 extracellular domain, the membrane-proximal D3 segment of the proteoglycan contains the primary binding site for interaction with galectin-3. The interaction between galectin-3 and NG2 is a carbohydrate-dependent one mediated by N-linked rather than O-linked oligosaccharides within the D3 domain of the NG2 core protein. These studies establish a foundation for attempts to reduce the aggressive properties of tumor cells by disrupting the NG2/galectin-3 interaction.  相似文献   

13.
Aminoacyl-tRNA synthetases, a group of enzymes catalyzing aminoacyl-tRNA formation, may possess inherent editing activity to clear mistakes arising through the selection of non-cognate amino acid. It is generally assumed that both editing substrates, non-cognate aminoacyl-adenylate and misacylated tRNA, are hydrolyzed at the same editing domain, distant from the active site. Here, we present the first example of an aminoacyl-tRNA synthetase (seryl-tRNA synthetase) that naturally lacks an editing domain, but possesses a hydrolytic activity toward non-cognate aminoacyl-adenylates. Our data reveal that tRNA-independent pre-transfer editing may proceed within the enzyme active site without shuttling the non-cognate aminoacyl-adenylate intermediate to the remote editing site.  相似文献   

14.
This study of two forms of ankyrin (protein 2.1 and 2.2) from human erythrocytes has revealed a role for alternate exon usage at the level of regulation of protein interactions. The smaller form of ankyrin (protein 2.2), which lacks a portion of the regulatory domain due to alternative splicing of pre-mRNA, exhibits increased affinity for the cytoplasmic domain of the anion exchanger, spectrin, and tubulin. Direct evidence that at least one of these associations is modulated by the alternatively spliced segment of the regulatory domain is provided by experiments utilizing a polypeptide that is comprised of residues 1513-1674 corresponding to the portion of the regulatory domain missing from protein 2.2. Addition of this regulatory domain polypeptide to binding assays reversed the increase in affinity of protein 2.2 for the anion exchanger. The inhibitory activity of the regulatory domain polypeptide in these assays is accompanied by a direct interaction with a site that is available on the smaller form of ankyrin and is distinct from the binding site for the anion exchanger. These results support the idea that the alternatively spliced segment within the regulatory domain of erythrocyte ankyrin performs a repressor function and acts through an allosteric mechanism involving interaction(s) at a site separate from the binding site for the anion exchanger.  相似文献   

15.

Background

Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms underlying the interaction between DLC1 and various tensins remain controversial.

Methodology/Principal Findings

We used a co-immunoprecipitation assay to identify a previously undocumented binding site at 375–385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1ΔPTB). However, as demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive activity of DLC1 upon its removal from DLC1.

Conclusions/Significance

This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1.  相似文献   

16.
The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA.EF-Tu.GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43-44 of 23S rRNA (referred to as L11-rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11-rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA.EF-Tu.GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states.  相似文献   

17.
EF-1alpha is an abundant eukaryotic protein whose principle function appears to be to bind aminoacyl-tRNA to the ribosome. However, it is also known that EF-1alpha from other sources binds both microtubules and microfilaments. We report the expression of Zea mays EF-1alpha (ZmEF-1alpha) in bacteria and that this protein has similar actin-binding properties as other EF-1alpha members. ZmEF-1alpha bundles actin filaments at low pH (6.5) and inhibits the addition of monomer at both filament ends, possibly as a consequence. ZmEF-1alpha binds actin filaments at all pH values tested (pH 6.0-8.0), indicating that one actin binding site is not pH sensitive. One of the actin-binding sites was determined to reside within domain I (1-223) of ZmEF-1alpha, but this domain did not affect the kinetics of polymerisation. We show that the bundling activity of ZmEF-1alpha is modulated by ZmADF3 a (a Zea mays ADF/cofilin), an actin filament severing protein, in vitro. Bundling of actin filaments caused by ZmEF-1alpha was enhanced in the presence of ZmADF3. The pH-dependent activities of both proteins in vitro suggests that they may work together to respond to temporal and spatial intracellular pH changes to regulate the pattern of the growth of plant cells.  相似文献   

18.
The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon.tRNA anticodon interaction should also extend to stop codon.Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously.  相似文献   

19.
Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.  相似文献   

20.
The nature of the modification of yeast ribosomes by the recombinant form of the ricin A chain has been examined. Evidence is presented that the 26S rRNA molecule is depurinated at a specific site and that the activity is inhibited by antibody raised to ricin A chain. It thus appears that the recombinant form of this toxin retains the depurination activity of the native molecule. These results are consistent with the model that the site of depurination is in a highly conserved sequence forming a loop on the surface of the ribosome, a domain involved in elongation factor-dependent binding of aminoacyl-tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号