首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
E Bremer  T J Silhavy  G M Weinstock 《Gene》1988,71(1):177-186
Lambda placMu phages are derivatives of bacteriophage lambda that use the transposition machinery of phage Mu to insert into chromosomal and cloned genes. When inserted in the proper fashion, these phages yield stable fusions to the Escherichia coli lac operon in a single step. We have determined the amount of DNA from the c end of phage Mu present in one of these phages, lambda placMu3, and have shown that this phage carries a 3137-bp fragment of Mu DNA. This DNA segment carries the Mu c-end attachment site and encodes the Mu genes cts62, ner+, and gene A lacking 179 bp at its 3' end (A'). The product of this truncated gene A' retains transposase activity and is sufficient for the transposition of lambda placMu. This was demonstrated by showing that lambda placMu derivatives carrying the A am1093 mutation in the A' gene are unable to transpose by themselves in a Su- strain, but their transposition can be triggered by coinfection with lambda pMu507(A+ B+). We have constructed several new lambda placMu phages that carry the A' am1093 gene and the kan gene, which confers resistance to kanamycin. Chromosomal insertions of these new phages are even more stable than those of the previously reported lambda placMu phages, which makes them useful tools for genetic analysis.  相似文献   

2.
P G?tt  M Ehrmann  W Boos 《Gene》1988,71(1):187-191
We describe a method that facilitates the sequencing of lacZ fusion joints based on in vivo subcloning onto phage M13. The method is useful for lacZ fusions that are isolated with the transposable lambda placMu phage into plasmids carrying the pBR322 bla gene. In vivo cloning of lacZ fusions is accomplished by recombination with two M13 phages carrying 5' or 3' segments of the bla gene, adjacent but differing in orientation to lacZ'. The presented method allows rapid sequencing of many fusion joints without subcloning in vitro.  相似文献   

3.
Chromosome rearrangements induced by recombinant coliphage lambda placMu   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
6.
7.
A mini-Mu bacteriophage, containing the cohesive-end packaging site (cos) from a lambda-phi 80 hybrid phage, a high-copy-number plasmid replicon, and a kanamycin-resistance gene for independent selection, was constructed to clone genes in vivo. This mini-Mu element can be derepressed to transpose at a high frequency. DNA segments that become flanked by copies of this mini-Mu element in the same orientation can be packaged by a helper lambda phage. The resulting lambda lysate can be used to infect recipient cells where the injected DNA can circularize by annealing at the cos termini. Drug-resistant transductants obtained carry the mini-Mu-replicon cosmid element with inserts of different nucleotide sequences. These are analogous to recombinant DNA clones generated in vitro with restriction endonuclease cutting and ligase joining reactions replaced by the Mu transposition process. Clones of particular genes were isolated by their ability to complement specific mutations. Both recA+ and recA- recipient cells can be used with equal efficiency. Clones obtained with a helper lambda phage require the presence of the cos site in the mini-Mu replicon. They carry larger inserts than those isolated with the same mini-Mu element and Mu as a helper phage. The mini-Mu replicon-cosmid bacteriophage contains a lac-gene fusing segment for isolating fusions of lac operon DNA to gene control regions in the cloned sequences. Independent clones of a particular gene can be used to prepare a restriction map of the gene and its flanking regions.  相似文献   

8.
The regulation of the S10 ribosomal protein operon of Escherichia coli was studied by using a lambda prophage containing the beginning of the S10 operon (including the promoter, leader, and first one and one-half structural genes) fused to lacZ. The synthesis of the lacZ fusion protein encoded by the phage showed the expected inhibition during oversynthesis of ribosomal protein L4, the autogenous regulatory protein of the S10 operon. Moreover, the fusion gene responded to a nutritional shift-up in the same way that genuine ribosomal protein genes did. However, the gene did not exhibit the expected growth rate-dependent regulation during steady-state growth. Thus, the genetic information carried on the prophage is sufficient for L4-mediated autogenous control and a normal nutritional shift-up response but is not sufficient for steady-state growth rate-dependent control. These results suggest that, at least for the 11-gene S10 ribosomal protein operon, additional regulatory processes are required to coordinate the synthesis of ribosomal proteins with cell growth rate and, furthermore, that sequences downstream of the proximal one and one-half genes of the operon are involved in this control.  相似文献   

9.
10.
11.
12.
A recombination site in the transducing bacteriophage lambda plac5 DNA has been structurally elucidated. Comparison of primary structures of E. coli lac-operon (distal end of lacZ gene, Z-Y spacer, and proximal end of lacY gene) described earlier with corresponding segments of bacteriophages lambda CI857 and lambda plac 5-2 DNAs sequenced in this paper showed that the bacterial DNA insert ends immediately after Z-Y spacer, just before the initiating triplet ATG of lacY gene. It thus follows that in contrast to the earlier conception, the insert does not seem to include any part of lacY gene. The recombination sites in both phage and bacterial DNA contain structurally homological segments about 20 b. p. long (crossover region), with two extra basepairs in the bacterial DNA (AT in the sense-strand). We suppose that the very dinucleotide plays a substantial role in initiation of recombinational event: causing formation of a nonperfect heteroduplex structure, it determines the T-A internucleotide bond to be endonucleolytically cut (crossover point) followed by exonucleolytic elimination of the extra links (AT) and reciprocal strand exchange. The second recombination site in lambda plac5 DNA has been localized by us within lacI gene as being close to the HindII site (nucleotides 854 to 859 of the gene). The structures of the two regions of site-specific recombination may shed light upon mechanisms of the phage abnormal excision leading to formation of transducing phages.  相似文献   

13.
14.
Excision of transposable genetic elements from host DNA is different from the classical prophage lambda type of excision in that it occurs at low frequency and is mostly imprecise; only a minority of excision events restores the wild-type host sequences. In bacteriophage Mu, a highly efficient transposon, imprecise excision is 10-100 times more frequent than precise excision. We have examined a large number of these excision events by starting with mucts X mutants located in the Z gene of the lac operon of Escherichia coli. Mucts X mutants are defective prophages whose excision occurs at a measurable frequency. Imprecise excision was monitored by selecting for melibiose+ (Mel+) phenotype, which requires only a functioning lacY gene. Mel+ revertants exhibit an array of DNA rearrangements and fall in four main classes, the predominant one being comprised of revertants that have no detectable Mu DNA. Most of these revertants can further revert to Lac+. Perhaps 5 base-pair duplications, originally present at prophage-host junctions, are left in these lacZ-Y+ revertants, and they can be further repaired to lacZ+. Another class has, in addition to the loss of Mu DNA, deletions that extend generally, but not always, to only one side of the prophage. The other two classes of revertants, surprisingly, still have Mu DNA in the lacZ gene. One class has deletions in the Z gene, whereas, no deletions can be detected in the other. Many of the revertants in the last class can further revert to lacZ+, indicating that the lacY gene must have been turned on by a rearrangement within Mu DNA. Apparently, all of the detectable precise and most of the imprecise excision events require functioning of the Mu A gene. We suggest that a block in large-scale Mu replication allows the excision process to proceed.  相似文献   

15.
Plaque-forming, biotin-transducing phages were constructed with the bio genes inserted between lambda genes P and Q. These phages were isolated for the eventual aim of fusing the lambda Q gene to the bio operon. The following steps were used to construct these phages: A defective temperature-sensitive lysogen was constructed with the bio genes adjacent to and to the left of lambda genes beta NcI857OPQSRA. Heat-resistant survivors were screened for deletions with endpoints in the bio operon and to the right of lambda P and to the left of lambda A. Five of approximately 1,600 heat-resistant survivors had these properties. Two had the gene order bioAB .... lambda QSRA. When these two strains were lysogenized with lambda cI857b221 and heat induced, the desired transducing phages were obtained. We characterized these phages and studied one in detail. Two-thirds of the plaque-forming transducing phages isolated carried the entire bioB gene and only part of the bioA gene, and one-third carried the entire bioA and bioB genes. The phages isolated lost the bio genes upon propagation, indicating that they contain a partial duplication of phage genes. The duplication was shown not to involve the entire lambda Q gene in one of these phages, lambda bioq1b221. A recombinant of this phage, lambda Nam7am53c17b221, failed to form plaques under biotin-derepression conditions. We conclude that if the lambda Q gene was fused to the bio operon in this phage, not enough lambda Q gene product was made to allow phage propagation.  相似文献   

16.
17.
Hybrid PLtl promoter with dual regulation control.   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
20.
A procedure was developed for introducing the coliphage Mu d1 (Apr lac) into Salmonella typhimurium in order to construct gene fusions that place the structural genes of the lac operon under the control of the promoter-regulatory region of other genes. To introduce Mu d1 from Escherichia coli K-12 into S. typhimurium, which is normally not a host for Mu, we first constructed an E. coli double lysogen carrying the defective Mu d1 phage and a Mu-P1 hybrid helper phage (MuhP1) that confers the P1 host range. A lysate prepared from this strain was used to infect a P1-sensitive (i.e., galE), restriction-deficient, modification-proficient strain of S. typhimurium, and a double lysogen carrying Mu d1 and MuhP1 was isolated. Induction of the latter strain produced lysates capable of infecting and generating gene fusions in P1-sensitive strains of S. typhimurium. In this paper we describe the construction of pyr::lac fusions by this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号