首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
MOORE  RANDY 《Annals of botany》1985,55(3):367-373
Cellular and tissue volumes in caps of primary and lateral rootsof Helianthus annuus have been measured in order to determinequantitatively how tissues and their functions are partitionedin root caps. Patterns of change in cellular dimensions andvolumes are similar in caps of primary and lateral roots. Significantincreases in cellular dimensions and volume occur during thedifferentiation of columella cells and the innermost peripheralcells. There are no significant changes in cellular dimensionsas either (i) the production and secretion of mucilage begins,or (ii) cells are sloughed from the cap. Tissues are partitionedsimilarly in caps of primary and lateral roots. indeed, rootcaps allocate 7–8 per cent of their volume for regeneration(i.e. calyptrogen tissue), 16–19 per cent of their volumefor graviperception (i.e. columella tissue), and approx. 38per cent of their volume for the production and secretion ofmucilage. These results are discussed relative to patterns ofcellular differentiation and tissue function in root caps. Helianthus annuus, root caps, primary root, lateral root, calyptrogen, columella, peripheral cells, tissue partitioning  相似文献   

2.
Primary roots of Phaseolus vulgaris (Fabaceae) are positively geotropic, while lateral roots are not responsive to gravity In order to elucidate the structural basis for this differential georesponse, we have performed a qualitative and quantitative analysis of the ultrastructure of columella cells of primary and lateral roots of P. vulgaris. Root systems were fixed in situ so as not to disturb the ultrastructure of the columella cells. The columellas of primary roots are more extensive than those of lateral roots. The volumes of columella cells of primary roots are approximately twice those of columella cells of lateral roots. However, columella cells of primary roots contain greater absolute volumes and numbers of all cellular components examined than do columella cells of lateral roots. Also, the relative volumes of cellular components in columella cells of primary and lateral roots are statistically indistinguishable. The endoplasmic reticulum is sparse and distributed randomly in both types of columella cells. Both types of columella cells contain numerous sedimented amyloplasts, none of which contact the cell wall or form complexes with other cellular organelles. Therefore, positive geotropism by roots must be due to a factor(s) other than the presence of sedimented amyloplasts alone. Furthermore, it is unlikely that amyloplasts and plasmodesmata form a multi-valve system that controls the movement of growth regulating substances through the root cap.  相似文献   

3.
MOORE  R.; PASIENIUK  J. 《Annals of botany》1984,53(5):715-726
Horizontally oriented primary roots of Ricinus communis aremore graviresponsive than similarly oriented lateral roots.The more pronounced graviresponsiveness of primary roots ispositively correlated with their caps having a more extensivecolumella tissue than caps of lateral roots. Individual columellacells of primary roots contain 2.6 times more protoplasm thando columella cells of lateral roots. Similarly, the absolutevolumes of all cellular components in columella cells of primaryroots are larger than those of lateral roots. However, thereare no statistically significant differences in the relativevolumes of any cellular component in columella cells of primaryvs lateral roots. Endoplasmic reticulum is distributed randomlyin columella cells of both types of roots. Columella cells ofprimary and lateral roots contain numerous sedimented amyloplastswhich do not consistently contact any cellular structure. Nucleitend to be located in the middle thirds of the columella cells,and the vacuole is found in largest concentrations in the middleand upper thirds of columella cells of both types of roots.The largest protoplasmic volumes of mitochondria occur in thelower thirds of columella cells, and dictyosomes are found insimilar concentrations throughout the cells. There is no significantdifference in the intracellular distributions of organellesin columella cells of primary vs lateral roots. We believe thatthe differing graviresponsiveness of primary vs lateral rootsof R. communis is probably due to factors other than the structuresof their individual columella cells. Ricinus communis, columella, graviperception, graviresponsiveness, roots, root cap  相似文献   

4.
Half-tipped primary and lateral roots of Ricinus communis cv Hale bend toward the side of the root on which the intact half-tip remains. Therefore, the minimal graviresponsiveness of lateral roots is not due to the inability of their caps to produce growth effectors (presumably inhibitors). The columella tissues of primary (i.e. graviresponsive) roots are (a) 4.30 times longer, (b) 2.95 times wider, (c) 37.4 times more voluminous, and (d) composed of 17.2 times more cells than those of lateral roots. The onset of positive gravitropism by lateral roots is positively correlated with a (a) 2.99-fold increase in length, (b) 2.63-fold increase in width, and (c) 20.7-fold increase in volume of their columella tissues. We propose that the minimal graviresponsiveness of lateral roots is due to the small size of their columella tissues, which results in their caps being unable to (a) establish a concentration gradient of the effector sufficient to induce gravicurvature and (b) produce as much of the effector as caps of graviresponsive roots.  相似文献   

5.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

6.
Medicago truncatula contains a family of at least five genes related to AUX1 of Arabidopsis thaliana (termed MtLAX genes for Medicago truncatula-like AUX1 genes). The high sequence similarity between the encoded proteins and AUX1 implies that the MtLAX genes encode auxin import carriers. The MtLAX genes are expressed in roots and other organs, suggesting that they play pleiotropic roles related to auxin uptake. In primary roots, the MtLAX genes are expressed preferentially in the root tips, particularly in the provascular bundles and root caps. During lateral root and nodule development, the genes are expressed in the primordia, particularly in cells that were probably derived from the pericycle. At slightly later stages, the genes are expressed in the regions of the developing organs where the vasculature arises (central position for lateral roots and peripheral region for nodules). These results are consistent with MtLAX being involved in local auxin transport and suggest that auxin is required at two common stages of lateral root and nodule development: development of the primordia and differentiation of the vasculature.  相似文献   

7.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

8.
Cellular degeneration is essential for many developmental and stress acclimation processes. Undifferentiated parenchymatous cells in the central vascular cylinder of pea primary roots degenerate under hypoxic conditions created by flooding at temperatures >15°C, forming a long vascular cavity that seems to provide a conduit for longitudinal oxygen transport in the roots. We show that specific changes in the cell wall ultrastructure accompanied previously detected cytoplasmic and organellar degradation in the cavity-forming roots. The degenerating cells had thinner primary cell walls, less electron-dense middle lamellae, and less abundant cell wall homogalacturonans in altered patterns, compared to healthy cells of roots grown under cold, nonflooded conditions. Cellular breakdown and changes in wall ultrastructure, however, remained confined to cells within a 50-μm radius around the root center, even after full development of the cavity. Cells farther away maintained cellular integrity and had signs of wall synthesis, perhaps from tight regulation of wall metabolism over short distances. These observations suggest that the cell degeneration might involve programmed cell death. We also show that warm, nonflooded or cold, flooded conditions that typically do not induce vascular cavity formation can also induce variations in cell wall ultrastructure.  相似文献   

9.
In contrast with other cells generated by the root apical meristem in Arabidopsis, pericycle cells adjacent to the protoxylem poles of the vascular cylinder continue to cycle without interruption during passage through the elongation and differentiation zones. However, only some of the dividing pericycle cells are committed to the asymmetric, formative divisions that give rise to lateral root primordia (LRPs). This was demonstrated by direct observation and mapping of mitotic figures, cell-length measurements, and the histochemical analysis of a cyclin-GUS fusion protein in pericycle cells. The estimated duration of a pericycle cell cycle in the root apical meristem was similar to the interval between cell displacement from the meristem and the initiation of LRP formation. Developmentally controlled LRP initiation occurs early, 3 to 8 mm from the root tip. Thus the first growth control point in lateral root formation is defined by the initiation of primordia in stochastic patterns by cells passing through the elongation and young differentiation zones, up to where lateral roots begin to emerge from the primary root. Therefore, the first growth control point is not restricted to a narrow developmental window. We propose that late LRP initiation is developmentally unrelated to the root apical meristem and is operated by a second growth control point that can be activated by environmental cues. The observation that pericycle cells divide and lateral root primordia form without intervening mitotic quiescence suggests that lateral organ formation in roots and shoots might not be as fundamentally different as previously thought.  相似文献   

10.
Lateral roots play an important role in water and nutrient uptake largely by increasing the root surface area. In an effort to characterize lateral root development in maize (Zea mays), we have isolated from Mutator (Mu) transposon stocks and characterized two nonallelic monogenic recessive mutants: slr1 and slr2 (short lateral roots1 and 2), which display short lateral roots as a result of impaired root cell elongation. The defects in both mutants act specifically during early postembryonic root development, affecting only the lateral roots emerging from the embryonic primary and seminal roots but not from the postembryonic nodal roots. These mutations have no major influence on the aboveground performance of the affected plants. The double mutant slr1; slr2 displays a strikingly different phenotype than the single mutants. The defect in slr1; slr2 does not only influence lateral root specific cell elongation, but also leads to disarranged cellular patterns in the primary and seminal roots. However, the phase-specific nature of the single mutants is retained in the double mutant, indicating that the two loci cooperate in the wild type to maintain the lateral root specificity during a short time of early root development.  相似文献   

11.
The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.  相似文献   

12.
MOORE  RANDY 《Annals of botany》1985,55(3):375-380
Primary roots of Ricinus communis having large caps and columellatissues are more graviresponsive than primary roots with smallcaps and columella tissues. The increased graviresponsivenessof roots with larger caps correlates positively with their columellatissues having larger length: width ratios than less graviresponsiveroots having smaller caps. Roots with wider tips typically aremore graviresponsive and have more extensive columellas thanroots with thinner tips. However, the size of the columellatissue correlates positively with graviresponsiveness, irrespectiveof the width of the root tip. These results indicate that differingdimensions of the columella tissue may be the basis for thediffering graviresponses of primary roots of R. communis. Root gravitropism, columella, root cap, primary root, Ricinus communis, castor bean  相似文献   

13.
Root system architecture plays an important role in determining nutrient and water acquisition and is modulated by endogenous and environmental factors, resulting in considerable developmental plasticity. The orientation of primary root growth in response to gravity (gravitropism) has been studied extensively, but little is known about the behaviour of lateral roots in response to this signal. Here, we analysed the response of lateral roots to gravity and, consistently with previous observations, we showed that gravitropism was acquired slowly after emergence. Using a lateral root induction system, we studied the kinetics for the appearance of statoliths, phloem connections and auxin transporter gene expression patterns. We found that statoliths could not be detected until 1 day after emergence, whereas the gravitropic curvature of the lateral root started earlier. Auxin transporters modulate auxin distribution in primary root gravitropism. We found differences regarding PIN3 and AUX1 expression patterns between the lateral root and the primary root apices. Especially PIN3, which is involved in primary root gravitropism, was not expressed in the lateral root columella. Our work revealed new developmental transitions occurring in lateral roots after emergence, and auxin transporter expression patterns that might explain the specific response of lateral roots to gravity.  相似文献   

14.
灰叶胡杨根蘖繁殖的形态解剖学特征   总被引:1,自引:0,他引:1  
利用常规石蜡切片法对灰叶胡杨(Populus pruinosa)根蘖繁殖特性进行形态解剖学研究。结果表明: 灰叶胡杨横走侧根由周皮、次生维管组织和四原型的初生木质部构成, 具有次生维管组织中维管射线、次生韧皮薄壁组织发达的结构特征。灰叶胡杨的根蘖繁殖源于横走侧根上不定芽的发生及生长发育。不定芽起源于横走侧根的木栓形成层, 木栓形成层经细胞分裂活动形成不定芽原基, 不定芽原基细胞分裂和生长分化形成在横走侧根表面可观察到的不定芽, 进而生长发育为根蘖苗。不定芽的发生具有同步或非同步的时间特征和单点或多点聚集的空间分布特点, 在生长发育过程中其基部可以产生新的不定芽。不定芽发生、分布和生长特点是根蘖苗大小不一、密集丛生的内在原因, 表明灰叶胡杨具有较强的根蘖繁殖能力。  相似文献   

15.
When growing under limiting phosphate (P) conditions, Arabidopsis thaliana plants show dramatic changes in root architecture, including a reduction in primary root length, increased formation of lateral roots and greater formation of root hairs. Here we report that primary root growth inhibition by low P is caused by a shift from an indeterminate to a determinate developmental program. In the primary root, the low P-induced determinate growth program initiates with a reduction of cell elongation followed by the progressive loss of meristematic cells. At later stages, cell proliferation ceases and cell differentiation takes place at the former cell elongation and meristematic regions of the primary root. In low P, not only the primary but also almost all mature lateral roots enter the determinate developmental program. Kinetic studies of expression of the cell cycle marker CycB1;1:uidA and the quiescent center (QC) identity marker QC46:GUS showed that in low P conditions, reduction in proliferation in the primary root was preceded by alterations in the QC. These results suggest that in Arabidopsis, P limitation can induce a determinate root developmental program that plays an important role in altering root system architecture and that the QC could act as a sensor of environmental signals.  相似文献   

16.
Root organogenesis involves cell division,differentiation and expansion. The molecular mechanisms regulating root development are not fully understood.In this study, we identified poly(adenosine diphosphate(ADP)-ribose) polymerases(PARPs) as new players in root development. PARP catalyzes poly(ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide(NADt)as the donor. We found that inhibition of PARP activities by3-aminobenzomide(3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-Mtransition were up-regulated upon treatment by 3-AB.The proportion of 2C cells increased while cells with higher DNA ploidy declined in the roots of treated plants, resulting in an enlarged root meristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zone, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important role in root development by negatively regulating root cell division.  相似文献   

17.
18.
It has been proposed that the acropetal initiation of lateral roots is a built‐in process specified as part of the general process of cell division and differentiation in the parent root tip. Conversely, it is commonly reported that root branching is essentially a variable feature. In the present study, the interlateral distance along the parent root has been investigated using three banana varieties (Musa spp.) grown in two substrates. The pattern of lateral root initiation was obscured by variations of root growth patterns and vascular structure among roots, genotypes and substrates. A framework model is formulated showing the influence of growth pattern and vascular structure on branching density. The model raises a distinction between growth components which should not affect the branching density (i.e. rate of cell division) and which may affect it (i.e. size of mature cells and number of transverse divisions performed by cells executing their trajectory in the meristem). It appears also that lateral root density and root growth rate might be independently modulated by appropriate changes of root growth patterns, in banana and presumably many other taxa.  相似文献   

19.
MOORE  R. 《Annals of botany》1985,56(2):173-187
Roots of Allium cepa L. cv. Yellow are differentially responsiveto gravity. Long (e.g. 40 mm) roots are strongly graviresponsive,while short (e.g. 4 mm) roots are minimally responsive to gravity.Although columella cells of graviresponsive roots are largerthan those of nongraviresponsive roots, they partition theirvolumes to cellular organelles similarly. The movement of amyloplastsand nuclei in columella cells of horizontally-oriented rootscorrelates positively with the onset of gravicurvature. Furthermore,there is no significant difference in the rates of organellarredistribution when graviresponsive and nongraviresponsive rootsare oriented horizontally. The more pronounced graviresponsivenessof longer roots correlates positively with (1) their caps being9.6 times more voluminous, (2) their columella tissues being42 times more voluminous, (3) their caps having 15 times morecolumella cells, and (4) their columella tissues having relativevolumes 4·4 times larger than those of shorter, nongraviresponsiveroots. Graviresponsive roots that are oriented horizontallyare characterized by a strongly polar movement of 45Ca2+ acrossthe root tip from the upper to the lower side, while similarlyoriented nongraviresponsive roots exhibit only a minimal polartransport of 45Ca2+. These results indicate that the differentialgraviresponsiveness of roots of A. cepa is probably not dueto either (1) ultrastructural differences in their columellacells, or (2) differences in the rates of organellar redistributionwhen roots are oriented horizontally. Rather, these resultsindicate that graviresponsiveness may require an extensive columellatissue, which, in turn, may be necessary for polar movementof 45Ca2+ across the root tip. Allium cepa, onion, root, columella tissue, columella cell, gravitropism, calcium, ultrastructure  相似文献   

20.
The distribution of calcium (Ca) in caps of vertically- andhorizontally-oriented roots of Zea mays was monitored to determineits possible role in root graviresponsiveness. A modificationof the antimonate precipitation procedure was used to localizeCa in situ. In vertically-oriented roots, the presumed graviperceptive(i.e., columella) cells were characterized by minimal and symmetricstaining of the plasmalemma and mitochondria. No precipitatewas present in plasmodesmata or cell walls. Within 5 min afterhorizontal reorientation, staining was associated with the portionof the cell wall adjacent to the distal end of the cell. Thisasymmetric staining persisted throughout the onset of gravicurvature.No staining of lateral cell walls of columella cells was observedat any stage of gravicurvature, suggesting that a lateral flowof Ca through the columella tissue of horizontally-orientedroots does not occur. The outermost peripheral cells of rootsoriented horizontally and vertically secrete Ca through plasmodesmata-likestructures in their cell walls. These results are discussedrelative to proposed roles of root-cap Ca in root gravicurvature. Key words: Antimonate, calcium, columella cell, peripheral cell, root gravitropism, Zea mays L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号