首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feeding selectivity of a tropical Chaoborus population   总被引:8,自引:0,他引:8  
SUMMARY. The Chaoborus population of Lake Lanao, Philippines, was sampled weekly over a 65-week period. Specimens representing all four instars, all times of the year, and two points in the daily migration cycle were dissected for determination of gut contents. Major items in the diet of Lanao Chaoborus include Bosmina, Diaphanosoma, and the copepodid and adult stages of cyclopoid and calanoid copepods. Items that are available but seldom eaten include nauplii and rotifiers except Keratella. Feeding rate averages 2.5% of body weight per day in instars 3–4. Predator size affects but does not fully explain prey selection. Electivity values are much higher for Bosmina and Diaphanosoma than for copepods, even though these food items overlap in size. Bosmina, which has the highest electivity value of any prey, is virtually identical in size to the calanoid nauplius, which has one of the lowest electivity values. This and other similar data suggest that prey of the same size differ greatly in palatability or vulnerability. There is a marked variation in feeding rate and food composition from day to night. The smallest Chaoborus feed more during the day than at night, but the opposite is true for Chaoborus of moderate to large size. Large Chaoborus switch from a daytime emphasis on copepod copepodids and adults to a nighttime emphasis on Cladocera. Diurnal variation between instars in food composition cannot be explained simply on the basis of the vertical distributions of predators and prey. An interaction of vertical distribution with prey density and predator selectivity does explain the overall Chaoborus feeding pattern, however. During the day, larger Chaoborus move deep into the water column where food is scarce. Their daytime feeding rate is lower due to low prey density at great depths. Low prey density is partially compensated by relaxation of preference. At night, upward migration of large Chaoborus into an area of high prey density permits a resumption of marked selectivity and high feeding rates. Small Chaoborus do not descend deep into the water column during the day, as their lower hunting efficiency apparently requires higher food density and use of visual cues to sustain adequate feeding rates. Prey density thus affects both the vertical distribution and feeding selectivity of the Chaoborus population.  相似文献   

2.
The foraging efficiency of juvenile perch (Perca fluviatilis), feeding on two types of prey, was studied in laboratory experiments. Waterfleas (Daphnia magna) and phantom midge larvae (Chaoborus flavicans) were offered in a range of densities, either separately or combined. Perch fed more efficiently on each prey type separately than when both were mixed. Foraging efficiency decreased with an increase of mixed prey density with both prey types present in equal numbers, but also when the proportion of Chaoborus increased. This could be caused by the existence of different hunting techniques, each of which is fully efficient in the presence of one prey type only. In the presence of two prey types, the predator constantly has to switch from one hunting technique to another.  相似文献   

3.
Heikki Hirvonen  Esa Ranta 《Oecologia》1996,106(3):407-415
We investigated foraging behaviour of larval dragonflies Aeshna juncea in order to examine the significance of prey density and body size in predator-prey dynamics. A. juncea were offered separately three size-classes of Daphnia magna at low and high densities. The data were collected with direct observations of the foraging individuals. We found that large A. juncea larvae could better enhance their intake of prey biomass as prey size and prey density increased than their smaller conspecifics. However, increasing feeding efficiency of both larval instars was constrained by declining attack success and search rate with increasing prey size and density. With small D. magna, in contrast to large A. juncea, small A. juncea increased their searching efficiency as prey density increased keeping D. magna mortality rate at a constant level. In a predator-prey relationship this indicates stabilizing potential and feeding thresholds set by both prey density and prey-predator size ratio. Attack success dropped with prey size and density, but did not change in the course of the foraging bout. For both A. juncea sizes prey handling times increased as more medium and large prey were eaten. The slope of the increase became steeper with increasing prey-predator size ratio. These observations indicate that components of the predator-prey relationship vary with prey density, contrary to the basic assumptions of functional response equations. Moreover, the results suggest that the effects of prey density change during the ontogeny of predators and prey.  相似文献   

4.
1. Larvae of Chaoborus, the phantom midge, are important pelagic planktivores in many freshwater lakes and ponds. The effect of Chaoborus on its prey depends on its size, especially mouth gape diameter, and vertical migration pattern, which affects predator–prey spatial overlap. These two features vary considerably in different Chaoborus species and instars. In this study, the interacting effects of both Chaoborus size and vertical distribution on population growth of Daphnia pulex was analysed with a field enclosure experiment and a matrix population model. 2. In the field experiment, Daphnia were grown in four replicated treatments that included a control (no Chaoborus) and three combinations of instar III and IV Chaoborus of two species (C. trivittatus and C. americanus). Parameters of the matrix model were based on differences between Chaoborus species and instars in capture and ingestion of Daphnia of differing sizes (prey vulnerability) and in vertical overlap with Daphnia in each treatment (density risk). 3. In comparison with the control, the two treatments containing the smaller, migratory C. americanus showed a significant effect on Daphnia population growth rate, while the treatment containing only the larger, non‐migratory C. trivittatus did not. The model accurately simulated these effects. 4. A Daphnia predation risk model, which uses prey vulnerability and density risk parameters, illustrated the individual and combined effect of the different Chaoborus types on Daphnia. Daphnia have a high prey vulnerability to the large C. trivittatus, but overall predation risk was low because of very little overlap. On the contrary, the smaller C. americanus affects only a small range of Daphnia instars, each with a low vulnerability, yet those instars that were vulnerable had a very high density risk because of an increased overlap. 5. This analysis of Daphnia predation risk parameters with coexisting Chaoborus species strongly supports an integrated approach using both size and vertical distribution to determine the ultimate predation effect on Daphnia.  相似文献   

5.
W. J. P. Smyly 《Hydrobiologia》1980,70(1-2):179-188
Laboratory observations on the feeding of fourth instar larvae of Chaoborus flavicans (Meigen) show that features relating to the prey, such as swimming behaviour, size and shape, play a major role in determining the kind of food eaten by the predator.In tests with two interacting limnetic cyclopoid copepods, Cyclops abyssorum out-competed Mesocyclops leuckarti when Chaoborus was absent but did not do so when Chaoborus was present.  相似文献   

6.
The effect of starvation on the feeding rate of larval Chaoborus(Diptera. Chaoboridae) was investigated using Daphnia roseaas prey. The starvation period varied from 12 h to 22 days.The starved Chaoborus were individually incubated with 10 Daphniaunder controlled light and temperature conditions. Observationswere made on prey mortality every 2 h for the first 12 h andonce after 24 h. Feeding rates gradually increased to a maximumbetween 7–11 days of starvation. After this period, feedingrates declined to previous low levels. Generally, feeding rateswere significantly higher during the first 2–4 h of feeding.Thereafter, feeding rates were lower and exhibited no consistentpattems with length of feeding time.  相似文献   

7.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

8.
Summary Predation rates for Chaoborus americanus on different types of noncyclomorphic zooplankton prey were determined in the laboratory as a function of both prey species and density. The sequence of events leading to consumption of prey was also observed, and probabilities determined for the various components.Predation rates generally reached an upper limit as the density of prey increased to high levels. Larger prey were always less vulnerable to Chaoborus predation. Among the species of zooplankton prey examined Holopedium gibberum suffered the lowest rates of predation, while those of the other plankters (Daphnia pulex, D. rosea, Moina hutchinsoni, Diaptomus birgei, D. leptopus, Cyclops vernalis) were approximately equivalent for any given size category.Observation of the predatory sequence indicates that for all the plankters except H. gibberum there were relatively high rates of evasion of attack by C. americanus and low rates of escape after capture. For H. gibberum the situation was reversed, and escape after capture was particularly important in determining the predation rate.The gelatinous envelope of Holopedium gibberum seems to operate as an effective anti-predator device which reduces the likelyhood of retention by Chaoborus after contact has been made.  相似文献   

9.
Summary Transparency reduces the chances of detection of large planktonic animals by visual predators. An important constraint on the transparency of planktonic animals may be ingested food which could be seen through the body, thereby increasing the vulnerability of transparent zooplankton to visual predators. To test this hypothesis, we presented fed and un-fed Chaoborus larvae to juvenile coho salmon (Oncorhynchus kisutch). Overall, the presence of prey in the gut of Chaoborus increased their probability of capture by 68%. Predation risks due to the visibility of ingested food increased in proportion to meal size: larvae with nearly full gut were captured about three times faster on the average than larvae which had little food in their gut. Although Chaoborus larvae may be able to reduce this increased predation risk by migrating downward to low light levels, this behavior would reduce feeding opportunities by removing the larvae from surface waters where prey density is generally high. In this way, visual predators may limit the growth and the maximum size that can be achieved by transparent animals.  相似文献   

10.
Summary Studies of the diel feeding patterns of the planktivorous fish, Xenomelaniris venezuelae, in Lake Valencia, Venezuela, revealed that, although the fish is primarily a diurnal feeder, it consumes substantial numbers of Chaoborus larvae and pupae at night. A number of fish species are known which feed on plankton at night, but these fish are filter feeders and their diets largely consist of relatively small, nonevasive prey. Chaoborus, however, is large and agile. Predation by Xenomelaniris in the dark was also studied experimentally. Captured fish were placed in completely darkened aquaria with zooplankton from Lake Valencia. After several hours the plankton was removed and examined for evidence of feeding. The fish were found to consume Chaoborus pupae and fourth instar larvae but not other types of prey. The mode of feeding by Xenomelaniris in the dark is unknown.  相似文献   

11.
The effects of alarm substance on feeding behaviour of zebra danio fish (Brachydanio rerio) were tested by offering them high and low densities of enclosed waterfleas (Daphnia magna). Normally the fish attacked high densities of prey, but when exposed to alarm substance they preferred lower and presumably less confusing prey densities — also lowering their feeding rate.  相似文献   

12.
1. In a field experiment we examined the interactive effects of two common predators of zooplankton, bluegill sunfish (Lepomis macrochirus) and Chaoborus spp. on the growth rate and habitat use of three congeneric prey species (Daphnia). Bluegill and Chaoborus both consume Daphnia, but bluegill also prey on Chaoborus. The prey species, Daphnia pulicaria, D. rosea and D. retrocurva, differed in body size and vertical distribution. We expected the largest species, D. pulicaria, to be most vulnerable to fish predation and the smallest species, D. retrocurva, to be most vulnerable to Chaoborus predation. 2. As we expected, the population growth rate of D. pulicaria was significantly reduced by fish. However, Chaoborus also significantly reduced the growth rate of this species. No significant interaction effect was detected, indicating that the effect of these predators was additive. The growth rates of D. rosea and D. retrocurva were significantly reduced by Chaoborus, but a significant interaction effect indicated that the effect of Chaoborus was stronger in the absence of fish than when fish were present. Therefore the impact of Chaoborus and fish on D. rosea and D. retrocurva was non-additive. The interactive effect of the two predators on D. retrocurva was greater in magnitude than on D. rosea. 3. In the absence of predators, the three Daphnia species showed no differences in mean habitat depth between day and night. Both predators significantly affected diel habitat use of D. pulicaria and D. rosea. Fish caused both of these Daphnia species to move deeper during the day, whereas Chaoborus caused Daphnia to move into shallower water at night. Daphnia retrocurva tended to migrate upwards at night in all predator treatments, but no significant differences in migration were observed among the predator treatments. The effects of predators on habitat use were not interactive for any prey species. 4. Our results suggest that body size, habitat use and the diel migratory response to predators are important factors mediating the interactive effects of multiple predator types on zooplankton.  相似文献   

13.
1. Neomysis mercedis predation rates on Daphnia magna were determined under laboratory conditions. There were generally no consistent differences between the number of Daphnia ingested at 10 and 14°C. 2. At each temperature, the number of prey consumed increased with mysid size and decreased with Daphnia size. 3. For small prey the relationship between ingestion rate and prey density represented a Type II functional response. However, for larger prey there was no significant relationship between density of prey and consumption by mysids. 4. The pattern of size-selective predation by Neomysis was studied to test the optimal foraging hypothesis. For prey populations with mixed size classes, the smallest size of prey was consumed most frequently but intermediate size prey provided the greatest biomass. These observations are contrary to our predictions based on calculations of profitability of different sizes of prey.  相似文献   

14.
To study the effects of short-term experience on prey size-selection ten-spined sticklebacks (Pungitius pungitius) were fed 7–13 days with five differing diets of novel prey, Daphnia magna. The diets consisted either of a mixture of two prey size classes (1.7 and 2.2 mm) or of single-sized (1.7 and 2.2 mm) prey. Before and after the diets, the sticklebacks' prey size selection was tested with a 1:1 ratio of 1.7 and 2.2 mm D. magna. Sticklebacks made more attempts to capture large than small prey, but their foraging success was better for small than for large prey. Sticklebacks fed with a diet of both prey sizes chose significantly more large prey on the 13th day than on the 7th day or at the beginning of the experiment. Handling times for both Daphnia size classes decreased slightly with increasing foraging experience. Inexperienced sticklebacks made more unsuccessful strikes on large prey than did experienced fish. Foraging success on large prey improved somewhat with increasing experience in all but one diet group. The results indicate that experience affected ten-spined sticklebacks' prey selection.  相似文献   

15.
Functional response curves of fourth instar larvae ofChaoborus flavicans preying on two size classes ofDaphnia longispina were examined throughout three summer seasons in a small forest lake. Data for each size class were fitted to Holling's disc equation. The parametersa (attack rate) andTh (handling time) were calculated for each prey size from these curves. Attack rate was greater and handling time was shorter for small (0.77 mm) than for large (1.82 mm)Daphnia. In 1:1 mixture of these prey size classes the predation rates ofChaoborus on smallDaphnia at prey densities above 20 l–1 were greater than predicted from the single size-class experiments. The observed predation rates on largeDaphnia were lower than predicted at all prey densities. Since both single size-class and two size-class experiments were run during the same period of time the difference in observed and predicted predation rates could not be attributed to seasonal changes in prey preference ofChaoborus larvae. In experiments with a concentrated mixture of lake zooplankton (dominated byD. longispina)Chaoborus preference forDaphnia decreased as prey body size increased. There was no obvious correlation between selectivity coefficients and size-frequency distributions ofDaphnia. When medium-sizedDaphnia were omitted from calculations the preference of small over large prey did not differ significantly from the predictions of the single size-class model.  相似文献   

16.
I develop a demographic model that examines the impact of Chaoborus predation on the population dynamics and life history of Daphnia. Predation effects are determined through analysis of the various components of the predator-prey interaction (encounter, attack, strike efficiency), and are integrated into a stage-classified matrix population model. The model is parameterized with data from interactions between D. pulex and fourth-instar C. americanus. I test this model with two laboratory experiments that examine population growth of D. pulex under the influence of five different levels of Chaoborus predation. With the exception of a single predation treatment in each experiment, the model accurately predicted the observed reduction in Daphnia numbers with increasing Chaoborus predation. I then use this model to investigate the evolution of delayed reproduction in D. pulex that are exposed to Chaoborus. I ask whether delayed reproduction may evolve in Daphnia that are subjected to Chaoborus predation as a trade-off for the benefits of larger body size. The model predicts that the effectiveness of such a life history trade-off depends on the relative sizes of predator and prey. In some interactions between Chaoborus and Daphnia, increasing Daphnia body length by as little as 5% from base growth trajectories sufficiently increases fitness (by reducing vulnerability to Chaoborus predation) to compensate for the cost of delayed reproduction. In other interactions, however, increased body length provides no benefit to Daphnia (and may even reduce fitness), and selection would act against the evolution of delayed reproduction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Zooplankton communities with a high or low density of Chaoborus larvae were established in outdoor concrete ponds, to which a carbamate insecticide, carbaryl, was applied at 0.1 or 0.5 mg l−1. The lower concentration of the chemical was harmful only to Cladocera. The higher concentration damaged Chaoborus, Copepoda, and some rotifer species, as well as Cladocera. In the ponds with a low density of Chaoborus, chemical application altered the cladoceran community from dominance by Daphnia to that by Bosmina and Moina. In the ponds with a high density of Chaoborus, Chaoborus excluded cladocerans from the zooplankton community presumably by predation, and supported the dominance of rotifers. Cladocera did not recover after application of the chemical, even when Chaoborus was eliminated by the higher concentration of chemical. The relatively rapid recovery of Chaoborus seemed to interrupt the recovery of Cladocera.  相似文献   

18.
Lennart Persson 《Oecologia》1985,67(3):338-341
Summary The foraging efficiency of a visually feeding fish, perch (Perca fluviatilis) was studied on two prey species (Daphnia magna and Chaoborus obscuripus) presented either separately or combined. It is shown that when both prey species are present, the foraging efficiency of the predator is reduced. This is due to the predator's inability to simultaneously cope with prey species with different anti-predatory behaviour. In the mixed-meal experiment the predator captured both prey species in equal proportions in disagreement with optimal foraging models assuming that handling time and encounter rate for a prey species are independent of other prey species. The results are, however, in agreement with optimal foraging models assuming that handling time and encounter rate are influenced by short time learning.  相似文献   

19.
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 103 cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was ?0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids.  相似文献   

20.
J. M. Jeschke  R. Tollrian 《Oecologia》2000,123(3):391-396
In this study, we show that the protective advantage of a defence depends on prey density. For our investigations, we used the predator-prey model system Chaoborus-Daphnia pulex. The prey, D. pulex, forms neckteeth as an inducible defence against chaoborid predators. This morphological response effectively reduces predator attack efficiency, i.e. number of successful attacks divided by total number of attacks. We found that neckteeth-defended prey suffered a distinctly lower predation rate (prey uptake per unit time) at low prey densities. The advantage of this defence decreased with increasing prey density. We expect this pattern to be general when a defence reduces predator success rate, i.e. when a defence reduces encounter rate, probability of detection, probability of attack, or efficiency of attack. In addition, we experimentally simulated the effects of defences which increase predator digestion time by using different sizes of Daphnia with equal vulnerabilities. This type of defence had opposite density-dependent effects: here, the relative advantage of defended prey increased with prey density. We expect this pattern to be general for defences which increase predator handling time, i.e. defences which increase attacking time, eating time, or digestion time. Many defences will have effects on both predator success rate and handling time. For these defences, the predator’s functional response should be decreased over the whole range of prey densities. Received: 15 September 1999 / Accepted: 23 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号