首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

2.
Zymogen granules (ZG) of rat pancreas have been isolated by the procedure of Paquet et al. The granules lysed when exposed to alkaline pH (pH 8.2), and their membranes could be subfractionated by centrifugation on a sucrose gradient. Four discrete types of membranes corresponding to densities of 1.105, 1.085, 1.075, and 1.020 were obtained, designated types A, B, C, and D, respectively and characterized both by morphological and biochemical criteria. Electrophoretic profiles showed that they contain the same protein bands but in different proportions. Type A membranes are comprised of four major bands corresponding to molecular weights of 80, 69, 54, and 20 kDa, being in higher concentration than the others. Types B and C contain three major bands at 80, 54 and 20 kDa whereas type D is comprised of only two major bands at 69 and 54 kDa, the latter polypeptide corresponding to ATP-diphosphohydrolase activity which is present in all four membrane types. Freeze-fracture of rapidly frozen membranes, followed by transmission electron microscopy (TEM) showed that type A are large superimposed sheets of membranes with amorphous material between sheets. The surface area of these sheets corresponds grossly to the surface of an intact ZG with a few intramembrane particles (IMP) distributed at random or in small aggregates on large smooth fracture planes. Types B and C exhibit a totally different aspect, forming closed vesicles about the size of a small ZG with few IMP distributed at random or in small aggregates on smooth fracture planes. Type D membranes are very small vesicles with no detectable IMP on relatively smooth fracture planes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Epstein-Barr virus-producing cells were used as a model to analyze, with a fracture-immunolabel technique, the distribution, behavior on fracture, and extent of glycosylation of viral transmembrane glycoproteins at the inner nuclear membrane. Surface and fracture immunolabeling with two monoclonal antibodies directed against the carbohydrate or polypeptide portions of the major viral envelope glycoproteins gp350/220 showed the following. (i) The glycoproteins present on the inner and outer nuclear membranes were labeled only with the monoclonal antibody directed against the polypeptide chain, whereas over the surface of virus-producing cells and on mature virions the labeling was dense and uniformly distributed with both monoclonal antibodies. (ii) The glycoproteins were nonuniformly distributed only over the inner nuclear membranes; at the sites of viral budding, the glycoproteins showed a preferential partition with the protoplasmic face. Since fully glycosylated glycoproteins were not present on the nuclear membranes, our observations support the proposed model of herpesvirus maturation. The peculiar distribution and partition on fracture of the envelope glycoproteins on the inner nuclear membrane are similar to those of Sindbis virus envelope glycoproteins on the plasma membrane of infected cells. Therefore, our results suggest that inner nuclear membranes may behave like plasma membranes during viral assembly.  相似文献   

4.
Contrary to the generally accepted rule that there are only two fracture faces associated with a membrane, the analysis of double replicas at rat heart muscle mitochondria revealed three pairs of complementary replicas with one face in each pair exposing the outer surface membrane. The replicas must then expose the surfaces of the outer surface membrane and in two of the pairs the fracture had passed between the two surface membranes in two alternative ways, either clearly between the two membranes or the fracture deviated into and through the inner surface membrane at regularly spaced intervals. This deviation reveals that at these sites the connection between the two surface membranes is particularly firm. The analysis led to the conclusion that these sites correspond to those where the stalk-like connections extending from the cristae are connected to the inner surface membrane. This way proteinaceous pathways connect the cristae to the surface of the mitochondria.  相似文献   

5.
《Micron (1969)》1982,13(4):419-423
A simple nomenclature for the freeze-fractured-etched membranes of procaryotic Gram-positive and Gram-negative micro-organisms is described. With a three letter code, the surface and fracture faces of the bacterial enveloping layers are clearly identified. The first letter defines the fracture face looking towards the bacterial cytoplasm (C) or the exterior (E), the second identifies structures as unfractured surfaces (S) or fractured faces of membranes (F) and the third locates the structure in the bacterial envelope.  相似文献   

6.
The technique of freeze-fracturing has been used to study the architecture of the pellicular complex of the intraoocyst sporozoite of Plasmodium berghei. The sporozoite is surrounded by three plasma membranes and a layer of subpellicular microtubules. During freeze-fracturing, each of the three membranes can split along its hydrophobic interior to yield a total of six fracture faces. The most obvious feature of each fracture face is the presence of globular intramembranous particles on the surface. The six fracture faces differ from one another in arrangement, size, and density of these intramembranous particles. Two of the fracture faces exhibit a unique arrangement of particles in well-organized parallel rows along the long axis of the sporozoite. This arrangement has not been reported in either the erythrocytic or the exoerythrocytic forms of Plasmodium spp. Another unique feature in the sporozoite revealed through freeze-fracturing is a single suture line that traverses the long axis of the inner two membranes of the parasite.  相似文献   

7.
The freeze fracture technique has been used to study the internal cyto-architecture of the surface membranes of the parasite and erythrocyte in Plasmodium knowlesi infections. Six fracture faces, derived from the plasma membrane and 2 pellicular membranes, have been identified at the surface of the free merozoite. The apposed leaflets of the 2 pellicular membranes show the characteristic features of E fracture faces, a result compatible with the view that the pellicular membranes line a potential cisterna. There is evidence to suggest that there may be changes in the distribution and density of the integral proteins in the merozoite plasma membrane at invasion. Furthermore, vesicles consisting of stacked membranes occur within and around the erythrocyte invagination at invasion; it is suggested that these vesicles are released from the merozoite rhoptries. Formation of the parasitophorous vacuole is accompanied by dramatic changes in the density and distribution of intra-membraneous particles (IMP) in the vacuolar membrane. Initially there is a great reduction in particle numbers, but subsequently the particles reappear and show reversed polarity. The possible causes and implications of these changes are discussed. The intra-erythrocytic parasite synthesizes new transmembrane proteins as development proceeds, and the trophozoite and schizont stages of development are characterized by the appearance of circular, particle-free regions in the parasite plasmalemma. There is a decrease in the density of transmembrane proteins in the erythrocyte plasma membrane during parasite maturation, and the P face IMP show the characteristic features of aggregation.  相似文献   

8.
Conidia of Botryodiplodia ricinicola (Saccardo) Petrak havebeen studied, principally by freeze-etch electron microscopy.Freshly harvested conidia have a thin scaly surface layer, freeof rodlets, which covers an otherwise homogeneous-looking wallwhich is continuous with the single centrally-perforate septum.The contours of the plasmalemma are usually smooth. Nuclei andsmall vacuoles are numerous. Hydrophobic fracture faces of theplasmalemma, tonoplasts and nuclear membranes variously revealintra-membrane particles or corresponding depressions or both.Lipid inclusions are small and numerous. Compact orderly stacksof membranes are present, sometimes one in each locule of theconidium. Conidia of a strain insensitive to chilling were seento differ only in respect of the distribution of intra-membraneparticles on fracture faces of tonoplasts. Chilled and chilled-and-soakedconidia of the wild type showed fine-structural differencesfrom untreated conidia, most obviously in respect of the greatersize of some of the lipid inclusions, but also in respect offeatures of the plasmalemma which after chilling contained plasmalemmasomesand, after subsequent immersion for 15 min, showed annular depressions.Also, intra-membrane particles in some membrane systems showedaltered distribution between the two hydrophobic fracture faces.It is concluded that cell lipids and cytoplasmic membrane systemsmay be involved in the previously demonstrated chilling sensitivityof conidia of this species. Botryodiplodia ricinicola, conidia, ultrastructure, chilling effects  相似文献   

9.
Summary The chloroplasts ofEuglena gracilis have been examined by freeze-cleaving and deep-etching techniques.The two chloroplast envelope membranes exhibit distinct fracture faces which do not resemble any of the thylakoid fracture faces.Freeze-cleaved thylakoid membranes reveal four split inner faces. Two of these faces correspond to stacked membrane regions, and two to unstacked regions. Analysis of particle sizes on the exposed faces has revealed certain differences from other chloroplast systems, which are discussed. Thylakoid membranes inEuglena are shown to reveal a constant number of particles per unit area (based on the total particle number for both complementary faces) whether they are stacked or unstacked.Deep-etchedEuglena thylakoid membranes show two additional faces, which correspond to true inner and outer thylakoid surfaces. Both of these surfaces carry very uniform populations of particles. Those on the external surface (the A surface) are round and possess a diameter of approximately 9.5 nm. Those on the inner surface (the D surface) appear rectangular (as paired subunits) and measure approximately 10 nm in width and 18 nm in length. Distribution counts of particles show that the number of particles per unit area revealed by freeze-cleaving within the thylakoid membrane approximates closely the number of particles exposed on the external thylakoid surface (the A surface) by deep-etching. The possible significance of this correlation is discussed. The distribution of rectangular particles on the inner surface of the thylakoid sac (D surface) seems to be the same in both stacked and unstacked membrane regions. We have found no correlation between the D surface particles and any clearly defined population of particles on internal, freeze-cleaved membrane faces. These and other observations suggest that stacked and unstacked membranes are similar, if not identical in internal structure.  相似文献   

10.
The freeze-etch technique was used to observe red blood cell ghosts labeled on both surfaces with covalently bound ferritin. Ferritin molecules were never observed on fracture faces, thus indicating that fracture does not show membrane-surface detail. Subliming away the surrounding ice did expose the ferritin on the membrane surface. These results were consistent with the concept that membranes split during the fracture process of freeze-etching.  相似文献   

11.
As part of a study of the cell surface changes associated with the production of murine mammary tumor virus, the structure of the envelope of this virus has been examined by using freeze-fracture techniques. Both fracture and deep-etch surfaces were examined. The fracture faces contain 10-nm spheres comparable to those observed on fractured plasma membranes, although fewer in number. Surfaces exposed by etching possess a highly regular hexagonal array of pits 25 nm apart. By examining freeze-fracture and freeze-etch preparations of virus with ferritin covalently bound to its surface, it has been determined that the surface exposed by etching is the outer surface of the virus. The pitted exterior surface of the mammary tumor virus appears to be a unique surface structure.  相似文献   

12.
Summary With freeze-fracturing sperm cells appear to be fractured preferentially through the plasma membranes. Only few fracture planes through the cytoplasm are found. Both the PF as well as the EF side of the sperm cell plasma membranes show a slightly undulating surface and contain intramembrane particles. The particle distribution is irregular and does not show any clustering. The EF side of the plasmamembrane contains approximately 3 times more particles per m2 than the PF side.Abbreviations EF extraplasmatic fracture face - IMP intramembrane particles - FDA fluorescein diacetate - PF plasmatic fracture face  相似文献   

13.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50% of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group. Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125-I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core. Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

14.
SYNOPSIS. Additional information on host interactions with trypanosomatid membranes was obtained from studies of a monomorphic strain of Trypanosoma brucei harvested at peak parasitemia from intact and lethally irradiated rats. Pellets of trypanosomes were fixed briefly in glutaraldehyde and processed for thin section electron microscopy or freeze-cleave replicas. Observations of sectioned material facilitated orientation and comparison of details seen in replicas. Fracture faces of cell body and flagellar membranes as well as 3-dimensional views of the nuclear membrane were studied. Cell body membranes of 80% of the organisms from intact rats contained random arrays of intramembranous particles (IMP). Aggregated clusters of particles appeared on the fracture faces of 20% of the trypanosomes. Some of these membranes had nonrandomly distributed particles aligned in distinct rows on the outer fracture face of both cell body and flagellum. Many inner face fractures of the cell body membranes had a particle arrangement similar to the longitudinal alignment of cytoskeletal microtubules. No aggregated particle distribution was seen in membranes of trypanosomes harvested from lethally irradiated rats. Replicas of trypanosome pellets also had plasmanemes as a series of attached, empty, coated membrane vesicles. These structures were found in close association with, as well as widely separated from the parasites. The shedding of these vesicles and the variation of particles in cell body membranes are discussed in light of antibody-induced architectural and antigenic changes in surface properties of trypanosomatids. The convex face of the inner membrane of the nucleus also is covered with randomly arrayed particles. More IMP were observed on the inner than on the outer nuclear membranes. Images of nuclear pores were also seen. The importance of these structures in drug and developmental studies of trypanosomes is discussed. On fracture faces of the flagellar membrane there were miniature maculae adherentes, unique to the inner fracture face and occurring only at regions of membrane apposition between cell body and flagellum. Each cluster of particles exposed by the freeze-cleave method corresponds to an electron-dense plaque seen in thin section images. However, because of a unique fracture pattern, these plaques were not revealed on the apposing body membranes, as illustrated in thin sectioned organisms.  相似文献   

15.
Freeze-etching was applied to preparations, with and without glycerol, of Acinetobacter sp. strain MJT/F5/199A, consisting of intact cells after normal growth or after incubation with chloramphenicol, spheroplasts, and isolated cell walls and outer membranes. Etched preparations show that a regular array of subunits forms the surface of normal cells. Near the zones of constriction in dividing cells, blebs and irregularities are seen, and some blebs, consisting of both surface subunits and outer membrane, are released from the cells. The cross-fractured cell envelope shows four layers which are related to the structures seen in section as follows: cw1, which is not visible in section, contains the surface subunits; cw2 consists of all or part of the outer membrane; cw3 includes the intermediate and dense, peptidoglycan-containing layers; within these cell wall layers is the plasma membrane. Internal fracture of the plasma membrane occurs under all conditions tested, but the fracture plane in the cell wall is only revealed in chloramphenicol-treated cells or normal cells freeze-fractured with glycerol present; the characteristic fracture faces are not seen in spheroplasts or isolated outer membranes. The concave fracture face cw2 consists of densely packed granules, while the convex face cw3 is fibrillar. The probable location of this fracture plane is discussed. After incubation with chloramphenicol, the outer surface of the cells is obscured by extracellular material, the dense peptidoglycan-containing layer is increased in thickness, and the cytoplasm contains rounded bodies bounded by one or more unit membranes.  相似文献   

16.
Many homopteran insects feed on plant sap which contains solutes in very low concentration. Their digestive tract presents a complex called the "filter chamber" where the excess dietary water is believed to flow directly from the initial part of the midgut to the terminal part of the midgut and the proximal regions of the Malpighian tubules. Freeze-fracture experiments carried out on the filter chamber of Cicadella viridis revealed the presence of intramembrane particles on the whole surface of the microvilli and of basal membrane infoldings of the cells. Examination of negatively stained isolated membranes and of freeze-dried shadowed membranes revealed that the inner surface of the membrane is covered with particles protruding into the cytoplasm; they correspond to the numerous intramembrane particles observed on the P fracture face of the membrane. The outer surface of the membrane exhibits a regular network which corresponds to that observed on the E fracture face. SDS-PAGE analyses were performed on purified membranes of the filter chambers of C. viridis and Philaenus spumarius. In both cases 2 major components, 25 kDa and 75 kDa, were detected. These 2 components appear to be specific for the filter chambers since they were not found in membranes isolated from the other parts of the midgut. Thus, the membranes of these filter chambers, thought to be water-shunting complexes, possess structural and biochemical peculiarities which are probably related to water permeability.  相似文献   

17.
We have investigated the structure of the photosynthetic membrane in a mutant of barley known to lack a chlorophyll-binding protein. This protein is thought to channel excitation energy to photosystem II, and is known as the "light-harvesting chlorophyll-protein complex." Extensive stacking of thylakoids into grana occurs in both mutant and wild-type chloroplasts. Examination of membrane internal structure by freeze-fracturing indicates that only slight differences exist between the fracture faces of mutant and wild-type membranes. These differences are slight reductions in the size of particles visible on the EFs fracture face, and in the number of particles seen on the PFs fracture face. No differences can be detected between mutant and wild-type on the etched out surface of the membrane. In contrast, tetrameric particles visible on the etched inner surface of wild-type thylakoids are extremely difficult to recognize on similar surfaces of the mutant. These particles can be recognized on inner surfaces of the mutant membranes when they are organized into regular lattices, but these lattices show a much closer particle-to-particle spacing than similar lattices in wild-type membranes. Although several interpretations of these data are possible, these observations are consistent with the proposal that the light-harvesting chlorophyll-protein complex of photosystem II is bound to the tetramer (which is visible on the EFs face as a single particle) near the inner surface of the membrane. The large tetramer, which other studies have shown to span the thylakoid membrane, may represent an assembly of protein, lipid, and pigment comprising all the elements of the photosystem II reaction. A scheme is presented which illustrates one possibility for the light reaction across the photosynthetic membrane.  相似文献   

18.
T Sekiya  K Yano  Y Nozawa 《Sabouraudia》1982,20(4):303-311
Freeze-fracture electron microscopy of the plasma membranes of Candida albicans yeast cells and red blood cells treated with amphotericin methyl ester and amphotericin B showed that amphotericin B (50 micrograms ml-1) caused extreme aggregation of intramembranous particles on the protoplasmic fracture face of the C. albicans membrane, and a marked reduction of the density of intramembranous particles. On the other hand, the rearrangement of intramembranous particles induced by amphotericin methyl ester (50 micrograms ml-1) produced elevations of the particle-free membrane domains toward the outside of the cells, so that the particles were aggregated in linear furrows surrounding these elevations on the protoplasmic fracture face, and the corresponding ridges on the exoplasmic fracture face. The density of intramembranous particles was greatly reduced on the protoplasmic fracture face. Both polyenes produced only small changes in the erythrocyte membranes at the same concentration. These results suggest that amphotericin methyl ester affects the ergosterol-containing membranes more than amphotericin B, and that ergosterol has a higher sensitivity for these two polyene antibiotics than cholesterol.  相似文献   

19.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50 % of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group.Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core.Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

20.
Treatment of rat liver rough microsomes (3.5 mg of protein/ml) with sublytical concentrations (0.08%) of the neutral detergent Triton X-100 caused a lateral displacement of bound ribosomes and the formation of ribosomal aggregates on the microsomal surface. At slightly higher detergent concentrations (0.12-0.16%) membrane areas bearing ribosomal aggregates invaginated into the microsomal lumen and separated from the rest of the membrane. Two distinct classes of vesicles could be isolated by density gradient centrifugation from microsomes treated with 0.16% Triton X-100: one with ribosomes bound to the inner membrane surfaces ("inverted rough" vesicles) and another with no ribosomes attached to the membranes. Analysis of the fractions showed that approximately 30% of the phospholipids and 20-30% of the total membrane protein were released from the membranes by this treatment. Labeling with avidin-ferritin conjugates demonstrated that concanavalin A binding sites, which in native rough microsomes are found in the luminal face of the membranes, were present on the outer surface of the inverted rough vesicles. Freeze-fracture electron microscopy showed that both fracture faces had similar concentrations of intramembrane particles. SDS PAGE analysis of the two vesicle subfractions demonstrated that, of all the integral microsomal membrane proteins, only ribophorins I and II were found exclusively in the inverted rough vesicles bearing ribosomes. These observations are consistent with the proposal that ribophorins are associated with the ribosomal binding sites characteristic of rough microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号