首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We have purified the luteinizing hormone (LH)/human choriogonadotropin (hCG) receptor to homogeneity by sequential affinity column on wheat germ lectin-Sepharose and hCG-Sepharose. The method was designed to allow also the purification of lactogen receptor from the initial starting material. Comparable purification of lactogen receptor can be attained using Con A-Sepharose as initial step. The purified LH/hCG receptor was identified as a single protein of Mr=75,000 on SDS gel electrophoresis. The lactogen receptor is composed of two dissimilar active subunits of Mr 88,000 and 40,000, the latter probably being an integral part of the larger form. Comparison of Mr's derived from SDS gels with those from fast performance liquid chromatography suggested that the native LH holoreceptor is present in a dimeric form, while the lactogen receptor seems to be composed of aggregates that could represent dimeric or trimeric forms of holoreceptor Mr 80,000. Cross-linking studies performed after binding of hCG (radiolabeled in the individual subunits) to the purified LH/hCG receptor indicated that the hCG α-subunit undergoes predominant interaction with the receptor molecule. The influence of the β-subunit in this interaction seems to occur mainly through its association with the α-subunit, presumably by conferring specificity to the α-subunit for its interaction with the receptor. The α-subunit, which is identical within species, has an important role in the receptor binding interaction and biological activity of glycoprotein hormones.  相似文献   

2.
We have purified the testicular luteinizing hormone (LH/human choriogonadotropin (hCG)) receptor by sequential affinity chromatography on hCG-Sepharose. The purified LH/hCG receptor was identified as a single protein of Mr = 90,000 +/- 2,000 on sodium dodecyl sulfate-gel electrophoresis (SDS-PAGE), showed high affinity binding for hCG, and a binding capacity of 3.8 nmol/mg of protein. Electrophoretically blotted receptor retained the ability to bind 125I-hCG on nitrocellulose membrane, and the Mr of radioactive band was consistent with that revealed by silver staining. Autoradiography after SDS-PAGE analysis of cross-linked purified receptor-hCG complex showed Mr = 145,000 and Mr = 105,000 bands. These results are consistent with a Mr value for the receptor of 90,000 after accounting for contribution by the intact hormone or its alpha-subunit. Analysis of the free receptor by fast protein liquid chromatography on Superose 12 revealed a single peak of binding activity for 125I-hCG which eluted in the position of Mr = 200,000-240,000 in the presence of Triton X-100. Since a single protein species is observed under reducing or nonreducing conditions in SDS-PAGE, the receptor could exist in the membrane as a dimeric form composed of subunits Mr = 90,000 associated through noncovalent interactions. The pure receptor can be phosphorylated in vitro by the catalytic subunit of cAMP-dependent protein kinase (approximately 0.3 mol of phosphate/mol of receptor). This phosphorylation does not affect the binding characteristics of the receptor. The method described is simple and allows rapid purification of microgram amounts of biological active Leydig cell LH/hCG receptor for structural, functional, and immunological studies.  相似文献   

3.
We have purified the luteinizing hormone (LH)/human choriogonadotropin (hCG) receptor by sequential affinity column on wheat germ lectin-Sepharose and hCG-Sepharose. The method was designed to allow also the purification of lactogen receptor from the initial starting material. The purified LH/hCG receptor retained full binding affinity and was identified as a single protein of Mr = 73,000 +/- 3,000 on sodium dodecyl sulfate-gel electrophoresis. Cross-linking studies performed after binding of hCG to the purified LH/hCG receptor indicated that the hCG alpha-subunit undergoes predominant interaction with the receptor molecule. The influence of the beta-subunit in this interaction seems to occur mainly through its association with the alpha-subunit, presumably by conferring specificity to the alpha-subunit for its hormonal interaction with the receptor. The technique described in this study is simple and allows rapid purification of microgram amounts of biologically active receptor suitable for further molecular characterization, microsequencing, and functional reconstitution studies.  相似文献   

4.
The luteinizing hormone (LH)/human choriogonadotropin (hCG) receptor of rat ovary was solubilized with Lubrol PX in the presence of 20% glycerol and protease inhibitors, and purified by one-step affinity chromatography. Purified receptor had a specific hCG binding capacity of 4900 pmol/mg protein, and displayed a single class of high affinity binding sites (Ka = 6.20 X 10(9) M-1). An 11,200-fold purification over the starting crude homogenate was achieved. The purified LH/hCG receptor was identified by sodium dodecyl sulfate-gel electrophoresis and silver staining as a single protein of 92 kDa. The ability of the purified 92-kDa protein to specifically bind hormone was demonstrated by electroblotting onto Immobilon P membrane, incubation with 125I-labeled hCG, and autoradiography of the blot. In addition to a 92-kDa band, ligand blotting also yielded a 170-kDa band representing receptor dimer. Covalent cross-linking of hCG, with isotope in either the alpha- or beta-subunit, to membrane-bound receptor produced complexes that contained a single receptor component of approximately 92 kDa. The cross-linking studies indicated that both subunits interact with receptor and also suggested receptor dimer formation. Following sodium dodecyl sulfate-electrophoresis, purified receptor was electroblotted onto polyethylenimine-treated glass fiber filters for direct microsequencing in a gas-phase sequenator. Eleven cycles of sequence analysis yielded the unique sequence: NH2-Arg-Glu-Leu-Ser-Gly-Ser-Leu-XXX-Pro-Glu-Pro-COOH. These results indicate that the rat ovarian LH/hCG receptor is a protein of 92 kDa which can be easily purified in microgram amounts. This study also describes a relatively simple technique for electroblotting and microsequencing that should be applicable to other membrane-bound hormone receptors.  相似文献   

5.
Gonadotropin receptors with specificity, high affinity and low capacity for luteinizing hormone and human chorionic gonadotropin (hCG) have been identified in rat luteal cells. To investigate the nature of the receptor, we have employed disuccinimidyl suberate, a cross-linker noncleavable by reducing agents, and dithiobis(succinimidyl propionate), a cleavable cross-linker, to covalently cross-link the 125I-hCG . receptor complex. The molecular weight of 125I-hCG-linked receptor complex and the receptor subunit structure were determined by electrophoresis in either 10 or 4.5% acrylamide in the presence of 0.1% sodium dodecyl sulfate with or without reducing agents. Autoradiographic analysis of the 125I-hCG-linked receptor separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing condition revealed a single labeled band corresponding to Mr = 305,000 +/- 15,000. However, electrophoresis performed in the presence of 50 mM dithiothreitol and 2% beta-mercaptoethanol resulted in the appearance of four labeled bands corresponding to Mr = 105,000 +/- 4,000, 96,000 +/- 5,000, 74,000 +/- 4,000, and 62,000 +/- 4,000 concomitant with the loss of the labeled band in the Mr = 305,000 region. Further experiments demonstrated that these four labeled bands were derived from the same molecular species. In addition, the 125I-hCG-linked receptor in the absence of reducing agent was not dissociated into subunits even by treatment with strong denaturing agent (8 M urea). The appearance of the cross-linked 125I-hCG . receptor was effectively inhibited by the unlabeled beta-subunit of hCG, intact hCG, and luteinizing hormone and partially inhibited by the alpha-subunit of hCG but not by choleratoxin, gonadotropin-releasing hormone, insulin or bovine serum albumin. These data suggest that 1) the hCG/luteinizing hormone receptor is an oligomeric complex linked by disulfide bonds and 2) that under reducing conditions, the oligomeric receptor dissociates into four nonidentical subunits.  相似文献   

6.
The hepatic glucagon receptor was covalently labeled with [125I-Try10]monoiodoglucagon [( 125I]MIG) by use of the heterobifunctional cross-linker hydroxysuccinimidyl p-azidobenzoate. Labeling of the Mr = 63,000 peptide was sensitive to glucagon and GTP at concentrations at which they affect [125I]MIG binding to the receptor. The labeled receptor was solubilized with Lubrol-PX, and the hydrodynamic characteristics of the receptor were determined. The molecular parameters of the solubilized receptor are: S20,w = 4.3 +/- 0.1, Stokes radius = 6.3 +/- 0.1 nm, frictional coefficient f/f0 = 1.8, and a calculated Mr = 119,000. Incubation of liver membranes at 32 degrees C for 15 min prior to the addition of [125I]MIG permitted us to identify the high molecular weight form (Mr = approximately 113,000) of the receptor by direct sodium dodecyl sulfate-gel electrophoretic analysis. The Mr = 63,000 peptide can be adsorbed to wheat germ lectin-Sepharose. The glycoprotein nature of the receptor has been utilized to develop an assay for the detergent-solubilized receptor that uses wheat germ lectin-Sepharose as a solid matrix to adsorb the [125I] MIG-receptor complex. The free hormone remains in the liquid phase and is removed in the supernatant after low speed centrifugation. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) solubilizes receptors with retention of [125I]MIG binding activity. [125I]MIG binding to the CHAPS-solubilized receptor is specifically affected by unlabeled glucagon. Interaction of [125I]MIG with the soluble receptor is insensitive to the presence of GTP. IC50 for glucagon using the soluble receptor was 33-70 nM, irrespective of the presence or absence of GTP, while when the membrane-bound receptor was used, the IC50 in the absence of GTP was 2-4 nM and in the presence of GTP was 35-80 nM. These data allow us to conclude that the hepatic glucagon receptor in the membrane and in the nondenaturing detergent solution is a dimer of the Mr = 63,000 hormone-binding subunit and a glycoprotein. The soluble receptor does not display any functional interaction with the stimulatory regulator.  相似文献   

7.
Membranes derived from free floating granulosa cells in porcine ovarian follicular fluid were used as a starting material for structural characterization of both LH/hCG and FSH receptors. The receptors were highly hormone-specific and showed single classes of high-affinity binding sites (Kd = 19-74 pM). Their molecular weights as determined by affinity cross-linking with their respective 125I-ligands were similarly 70,000. The membrane-localized receptors could be solubilized with reduced Triton X-100 in the presence of 20% glycerol with good retention of hormone binding activity. The Triton extracts of membranes also showed hormone specificity and equilibrium binding constants similar to the membrane receptors (Kd = 32-48 pM). Affinity chromatography on divinylsulfonyl-Sepharose-oLH columns was utilized to purify the solubilized LH/hCG receptor to a specific activity of 2000 pmol/mg of protein. The purified receptor exhibited a high specificity for hCG and hLH but not for hFSH nor bTSH. The purified receptor was iodinated and visualized to be composed of a major protein of Mr approximately 70,000 and other minor proteins of molecular weights ranging from 14,000 to 40,000. Except for the Mr 14,000 protein, all other protein species bound to the concanavalin A-Sepharose column. The data suggest that the ovarian LH/hCG and FSH receptors are structurally similar and consist of a single polypeptide chain, as recently documented for the LH/hCG receptor (Loosefelt et al., 1989; McFarland et al., 1989).  相似文献   

8.
The ATP pools of monolayer cultures of rat embryo fibroblasts and rat liver cells (BRL-3A2) were labeled with [32P]H3PO4. The type II insulin-like growth factor (IGF) receptor was purified by affinity chromatography on wheat germ lectin-Sepharose and IGF-II-Sepharose columns. A phosphorylated species having the expected size of the type II receptor (Mr = 220,000 without reduction, Mr = 260,000 with reduction) was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. IGF-II stimulated phosphorylation of the type II receptor in BRL-3A2 rat liver cells. Lability of the receptor phosphate bonds to alkaline pH suggests that the bulk of phosphorylation was occurring on serine residues.  相似文献   

9.
Gonadotropin-releasing hormone (GnRH) receptors were solubilized from rat pituitary membrane preparations in an active form by using the zwitterionic detergent CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid). The solubilized receptor exhibits high affinity, saturability, and specificity. The soluble supernatant retained 100% of the original binding activity when stored at 4 or -20 degrees C in the presence of 10% glycerol. The receptors were resolved into two components on the basis of chromatography on wheat germ agglutinin-agarose. Homogeneous receptor preparation was obtained by two cycles of affinity chromatography on immobilized avidin column coupled to [biotinyl-D-Lys6]GnRH. The overall recovery of the purified receptor was 4-10% of the initial activity in the CHAPS extract, and the calculated purification -fold was approximately 10,000 to 15,000. Analysis of iodinated purified GnRH receptors by autoradiography indicated the presence of two bands, Mr = 59,000 and 57,000. This was confirmed by photoaffinity labeling of the partially purified receptors and suggests that both components can specifically bind the hormone.  相似文献   

10.
The beta 1-adrenergic receptor of rat fat cells was effectively solubilized with digitonin and purified by affinity chromatography and steric exclusion high pressure liquid chromatography (HPLC). The purification strategy described permits an approximately 24,000-fold purification of the beta 1-adrenergic receptor of fat cells with an overall recovery of approximately 70%. Purified receptor preparations demonstrate a specific activity for (-) [3H]dihydroalprenolol binding of 12 nmol/mg of protein. The purified receptor was shown to migrate in steric exclusion HPLC as a Mr = 67,000 protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated purified receptor revealed a single, major peptide of Mr = 67,000. The binding of (-) [3H]dihydroalprenolol to purified receptor preparations displayed stereoselectivity and affinities for antagonists similar in nature to the membrane-bound and digitonin-solubilized beta 1-adrenergic receptor. In addition to the Mr = 67,000 component, a Mr = 140,000 form of the receptor was identified in HPLC runs of freshly prepared, affinity chromatographed receptor preparations that had not been frozen. This larger form of the receptor yielded binding activity of Mr = 67,000 on sequential HPLC runs and was shown to contain the Mr = 67,000 peptide. The beta 1-receptor from this mammalian source, composed of a single Mr = 67,000 peptide, is clearly quite distinct from the purified avian beta 1-, amphibian beta 2-, and mammalian beta 2-adrenergic receptors described by others.  相似文献   

11.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

12.
Neuropeptide Y (NPY) is an important neuropeptide in both central and peripheral neurones whereas peptide YY (PYY) is a gut hormone present in endocrine cells in the lower bowel. Both peptides interact with multiple binding sites that have been further classified into Y1 and Y2 receptors. We have solubilized native Y2 receptors both from basolateral membranes of proximal convoluted tubules from rabbit kidney and from rat hippocampal membranes. Solubilization of functional Y2 receptors was obtained with both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin and resulted in each case in a single class of high affinity binding sites. The soluble receptor retained the binding specificity for different peptides and long C-terminal fragments of NPY exhibited by membrane preparations. Gel filtration of solubilized receptors resulted in a single peak of specific PYY binding activity corresponding to Mr = 350,000 whereas affinity labeling revealed a major band of Mr = 60,000. Since this binding activity was inhibited by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) the Y2 receptor is probably solubilized as a receptor complex containing a G-protein along with the ligand binding protein. Y2 receptor binding sites from kidney tubular membranes were purified to homogeneity by a three-step procedure employing Mono S cation-exchange adsorption, affinity chromatography on wheat germ lectin-agarose beads, and affinity chromatography on NPY-Affi-Gel. Electrophoresis and silver staining of the final receptor preparation revealed a single protein with Mr = 60,000 whereas gel filtration showed a single peak at approximately Mr = 60,000. The purified protein can be affinity labeled with [125I-Tyr36]PYY, indicating that the Mr = 60,000 protein contains the ligand binding site of the Y2 receptor, and this binding is not affected by GTP gamma S. Scatchard transformation of binding data for the purified Y2 receptors was compatible with a single class of binding sites with Kd = 76 pM. The purified Y2 receptors retain their binding properties with regard to affinity and specificity for different members of the pancreatic polypeptide-fold peptide family. The specific activity of purified Y2 receptors was calculated to approximately 14.7 nmol of ligand binding/mg of receptor protein, which is consistent with the theoretical value (16.6 nmol/mg) for a pure Mr = 60,000 protein binding one PYY molecule. Purification to homogeneity thus reveals the Y2 receptor as an Mr = 60,000 glycoprotein.  相似文献   

13.
We have previously shown that the pancreatic cholecystokinin (CCK) receptor can be solubilized in 1% digitonin. In this study, digitonin-solubilized CCK receptors from rat pancreas were purified using sequential affinity chromatography on ricin-II agarose and on AffiGel-CCK. Electrophoresis of the radioiodinated purified receptors on SDS-polyacrylamide gels followed by autoradiography revealed two proteins: a major band of Mr = 80,000-90,000, and a minor band of Mr = 55,000. Through the purification procedure, the receptors preserved their agonist specificity (CCK-8 less than CCK-33 less than desulfated CCK-8 less than CCK-4) and binding affinity. Scatchard transformations of binding data for the purified receptor preparation were best fit by linear plots compatible with a single class of binding sites with Kd = 9.4 nM. The estimated purification was about 80,000 fold and consistent with the expected Bmax for a pure Mr = 80,000 protein binding one CCK molecule. This two-step purification procedure opens the possibility for molecular studies of the CCK receptor.  相似文献   

14.
Purification and partial characterization of rat ovarian lutropin receptor   总被引:2,自引:0,他引:2  
Lutropin (LH) receptor was solubilized from pseudopregnant rat ovaries and purified by two cycles of affinity chromatography on human choriogonadotropin (hCG)-Affi-Gel 10. The purified receptor preparation contained a single class of high-affinity 125I-hCG binding sites with an equilibrium dissociation constant (Kd) of 5.1 X 10(-10) M (at 20 degrees C) and had a specific hormone binding capacity of 7920 pmol/mg of protein. The purified receptor migrated as a single 90-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both nonreducing and reducing conditions. Affinity cross-linking of the purified receptor to 125I-hCG produced a 130-kDa complex. Hormone-binding ability of the purified 90-kDa polypeptide was demonstrated also by ligand blotting. The purified receptor was electroblotted onto nitrocellulose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions followed by incubation with 125I-hCG. Autoradiography revealed labeling of a 90-kDa band. This labeling was displaced by unlabeled hCG and human LH but not by human follitropin or rat prolactin. In addition, LH receptors of bovine corpora lutea and mouse Leydig tumor cells were shown by ligand blotting to contain a 90-kDa hormone binding unit, suggesting that LH receptor structure is well conserved among mammalian species. The purified rat ovarian LH receptor bound to immobilized wheat germ agglutinin, implying that the receptor is a glycoprotein. These results demonstrate that the hormone-binding unit of rat ovarian LH receptor is a 90-kDa membrane glycopolypeptide.  相似文献   

15.
The luteinizing hormone/human choriogonadotropin (hCG) receptor from superovulated rat ovary was purified to homogeneity. A novel scheme based on reverse immunoaffinity chromatography using immobilized antibodies to membrane proteins from receptor down-regulated ovary and subsequent two-step affinity purification on hCG-Sepharose was used to isolate homogeneous receptor. The purification method was also compared to an alternate scheme involving lectin affinity chromatography followed by hCG affinity chromatography. The purified receptor obtained by the latter method was heterogeneous and highly aggregated. The hormone binding properties, molecular size, and subunit composition of the purified receptor obtained by either method were identical. The stability of the receptor during and following solubilization was markedly improved by using 20% glycerol. The pure receptor consists of four nonidentical subunits of molecular weight 79,300 (alpha), 66,400 (beta), 55,300 (gamma), and 46,700 (delta) as indicated by polyacrylamide gel electrophoresis under reducing conditions. All receptor subunits generally, but occasionally excepting the alpha-subunit, were specifically labeled with iodinated hCG in membrane and soluble receptor preparations using bifunctional cross-linking agents. Analysis of the cross-linked hormone-receptor complexes under nonreducing conditions showed the molecular mass of the undissociated receptor to be 268,000 daltons. Hormone binding studies demonstrated that the isolated receptor retained all of the specific binding characteristics expected for the luteinizing hormone/hCG receptor. In combination, these results indicate that the functional and structural properties of the receptor were not altered during purification.  相似文献   

16.
Insulin-like growth factor (IGF) I receptor was purified from Triton X-100-solubilized human placental membranes by wheat germ agglutinin-Sepharose chromatography followed by immunoaffinity chromatography using alpha IR-3, a monoclonal antibody directed against the IGF-I receptor. Purification of 3200-fold and 2800-fold was achieved from wheat germ agglutinin-Sepharose eluates with regard to IGF-I binding and kinase activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions revealed two major protein bands corresponding to the alpha and beta subunits of the receptor, which accounted for at least 90% of the protein content. The purified receptor bound 10-20 micrograms of IGF-I/mg of protein and was more than 95% free of contamination by insulin receptor. It sedimented in glycerol gradients as a single species with a sedimentation coefficient of 13.7 S and gave three protein bands with Mr = approximately 300,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, indicating that alpha 2 beta 2 is an intact form of the IGF-I receptor. The purified receptor, when incubated with [gamma-32P] ATP, became phosphorylated at tyrosine residues of its beta subunit. This was stimulated 3-fold by IGF-I. It also had IGF-I-stimulated tyrosine kinase activity (5264 pmol of 32P incorporated/min/mg of protein) toward a synthetic peptide corresponding to the autophosphorylation site of pp60src. These data strongly suggest that it is a tyrosine-specific protein kinase.  相似文献   

17.
Highly purified alpha- and beta-subunits of thyrotropin were individually radioiodinated and, subsequently, recombined with their unlabeled complementary subunits. This procedure resulted in the formation of [125I]thyrotropin(TSH) hybrid molecules which were labeled on only one hormone subunit. Characterization of the binding properties of these two hybrid molecules demonstrated that both yielded nonlinear Scatchard plots with Kd and Bmax values similar to those obtained with radioiodinated native TSH and that both were capable of interaction with the high- and low-affinity binding components of the TSH receptor. The recombined [125I]TSH molecules were then crosslinked to the TSH receptor using disuccinimidyl suberate. Following electrophoresis and autoradiography, two labeled TSH-receptor complexes with Mr of 68,000 and 80,000 were observed. These two complexes exhibited hormone specificity and electrophoretic mobility identical to those previously observed using native [125I]TSH. Crosslinking with increasing concentrations of disuccinimidyl suberate suggested that the formation of the 68,000 and 80,000 complexes was sequential with the 68,000 appearing before the 80,000. Furthermore, the two bands were labeled regardless of which TSH subunit of the hybrid TSH was radioiodinated. These data strongly suggest that the 68,000 and 80,000 TSH-receptor complexes are the result of crosslinking to the TSH alpha-beta dimer and not to one subunit in the case of the 68,000 complex and to the TSH alpha-beta dimer in the case of the 80,000 complex, as had been hypothesized previously.  相似文献   

18.
The GABAA receptor has been purified to homogeneity from bovine cerebral cortex. Under stringent conditions of isolation, the GABAA receptor was shown to consist only of alpha (Mr 53 000) and beta (Mr 57 000) subunits. A densitometric scan of SDS-PAGE gels under reducing conditions showed that these subunits were present in a 1:1 ratio. A model of the receptor as a heterologous tetramer alpha 2 beta 2 is proposed. Monoclonal antibodies have been raised to the purified bovine GABAA receptor. One of these antibodies, 1A6, was shown to react with both the alpha and beta subunits of the purified receptor. The subunits were still positive in immunoblots following the removal of the carbohydrate moieties of the respective polypeptides by endoglycosidase F treatment. This antibody has been employed to demonstrate antigenic cross-reactivity between the GABAA receptors of three vertebrate species. It is further proposed that there is partial amino acid sequence homology between the alpha and beta polypeptides and hence that they are derived from a single ancestral gene.  相似文献   

19.
Human chorionic gonadotropin (HCG) is a glycoprotein hormone consisting of two noncovalently bonded subunits, alpha and beta. The hormone can be dissociated and reassociated. Whereas the individual subunits do not show any receptor binding activity, the reconstituted molecule is almost fully active. The amino acid and carbohydrate sequences in hCG-alpha and hCG-beta are described. There are in all seven carbohydrate units, four complex asparagine-linked and three serine-linked short oligosaccharide chains. The sequential removal of monosaccharides from the carbohydrate moiety of the hormone results in derivatives that bind to the cell surface receptors but inhibit the hCG-induced accumulation of cAMP. The derivatives, however, still are able to produce steroidogenesis maximally. The data raise the possibility of other mediator(s) of the hormone action in addition to cAMP. The hCG/LH (luteinizing hormone) receptor has been labeled by the incorporation of N-acetyl-D-1-[14C] glucosamine and also by the selective incorporation of 125I or 131I. Using 131I-labeled bovine corpus luteal plasma membranes, a method for the purification of the receptor to homogeneity has been developed. The purified receptor has properties similar to the membrane-bound receptor. Availability of the purified receptor offers newer approaches to the study of molecular mechanisms of polypeptide hormone action.  相似文献   

20.
Localization of receptor-bound human chorionic gonadotropin (hCG) in rat testis was studied by the peroxidase-antiperoxidase (PAP) complex method. The rats were injected with a single intravenous dose (1000 IU) of hCG. Three, 6, 12, and 24 hr after injection the testes were removed for localization of the hormone. The hormone localized to the periphery of the Leydig cells at all observation points. The intensity of the staining varied between the cells, suggesting that the number of receptors or the accessibility of the receptors to the circulating hormone varies from one cell to another. The staining surrounded the Leydig cells unevenly, but no progressive patching or capping was found. This observation suggests that hCG binds preferentially to the cell surface areas directed toward the capillaries. Compatible results were obtained with anti-hCG serum and with antisera against the hCG subunits. These results are consistent with previous observations that the luteinizing hormone (hCG) receptors accessible to the circulating hormone are located at the surface of the Leydig cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号