首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Coupling between cyclooxygenases and terminal prostanoid synthases   总被引:7,自引:0,他引:7  
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2, cyclooxygenase (COX), and terminal prostanoid synthase. Recent evidence suggests that lineage-specific terminal prostanoid synthases, including prostaglandin (PG) E2, PGD2, PGF2alpha, PGI2, and thromboxane synthases, show distinct functional coupling with upstream COX isozymes, COX-1 and COX-2. This can account, at least in part, for segregated utilization of the two COX isozymes in distinct phases of PG-biosynthetic responses. In terms of their localization and COX preference, terminal prostanoid synthases are classified into three categories: (i) the perinuclear enzymes that prefer COX-2, (ii) the cytosolic enzyme that prefers COX-1, and (iii) the translocating enzyme that utilizes both COXs depending on the stimulus. Additionally, altered supply of arachidonic acid by phospholipase A2s significantly affects the efficiency of COX-terminal prostanoid synthase coupling. In this review, we summarize our recent understanding of the coupling profiles between the two COXs and various terminal prostanoid synthases.  相似文献   

3.
The oviduct is a specialized organ responsible for the storage and the transport of male and female gametes. It also provides an optimal environment for final gamete maturation, fertilization, and early embryo development. Prostaglandin (PG) E2 is involved in many female reproductive functions, including ovulation, fertilization, implantation, and parturition. However, the control of its synthesis in the oviduct is not fully understood. Cyclooxygenases (COXs) are involved in the first step of the transformation of arachidonic acid to PGH2. The prostaglandin E synthases (PGESs) constitute a family of enzymes that catalyze the conversion of PGH2 to PGE2, the terminal step in the formation of this bioactive prostaglandin. Quantitative real-time PCR was used to determine the expression of COX-1, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), microsomal prostaglandin E synthase-2 (mPGES-2), and cytosolic prostaglandin E synthase (cPGES) mRNA in various sections of the oviduct, both ipsilateral and contralateral (to the ovary on which ovulation occurred) at various stages of the estrous cycle. Furthermore, protein expression and localization of cPGES, mPGES-1, and mPGES-2 were determined by Western blot and immunohistochemistry. All three PGESs were detected at both mRNA and protein levels in the oviduct. These PGESs were mostly concentrated in the oviductal epithelial layer and primarily expressed in the ampulla section of the oviduct and to a lesser extent in the isthmus and the isthmic-ampullary junction. The mPGES-1 protein was highly expressed in the contralateral oviduct, which contrasted with mPGES-2 mostly expressed in the ipsilateral oviduct. This is apparently the first report documenting that the three PGESs involved in PGE2 production were present in the Bos taurus oviduct.  相似文献   

4.
磷脂酶A2、环氧合酶以及前列腺素E合成酶是前列腺素E合成途径中顺序起作用的重要酶类,其中前列腺素E合成酶有两种不同的亚型,分别介导不同的前列腺素E合成反应。前列腺素E可与其受体特异性结合,并通过旁分泌和自分泌两种形式调节细胞反应,参与多种生理过程。近来研究发现,前列腺素E受体不仅存于质膜,而在核膜上也大量存在。前列腺素E核受体介导的信号转导途径与膜受体介导的信号途径不同,对于基因转录的调控机制也不同。本文综述并探讨了上述分子所组成的网络系统在哺乳动物生殖,尤其是雌性生殖过程中所发挥的重要作用。  相似文献   

5.
Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C14:0-Cer – C26:0-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure–activity relationships and the potential biological impact of these compounds are discussed.  相似文献   

6.
Prostanoids are a group of potent bioactive lipids produced by oxygenation of arachidonate or one of several related polyunsaturated fatty acids. Cellular prostaglandin biosynthesis is tightly regulated, with a large part of the control exerted at the level of cyclooxygenase catalysis by prostaglandin H synthase (PGHS). The two known isoforms of PGHS have been assigned distinct pathophysiological functions, and their cyclooxygenase activities are subject to differential cellular control. This review considers the contributions to cellular catalytic control of the two PGHS isoforms by intracellular compartmentation, accessory proteins, arachidonate levels, and availability of hydroperoxide activator.  相似文献   

7.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

8.
The measurement of prostaglandin E synthase (PGES) activity is cumbersome because the product of the reaction, PGE(2), is not readily quantitated by spectral means. The activity of isolated PGES is typically determined by PGE(2) immunoassay or by high-performance liquid chromatography using radiolabeled substrate. A relatively rapid continuous spectrophotometric assay which uses 15-hydroxyprostaglandin dehydrogenase (PGDH) to couple the oxidation of the 15-hydroxy group of PGE(2) to the formation of NADH was developed. PGDH is relatively specific for PGE(2) over the substrate for the PGES reaction, PGH(2), allowing a highly reproducible assay of PGES activity to be obtained.  相似文献   

9.
The chloroplast ATP synthase synthesizes ATP from ADP and free phosphate coupled by the electrochemical potential across the thylakoid membrane in the light. The light-dependent regulation of ATP synthase activity is carried out in part through redox modulation of a cysteine disulfide bridge in CF1 gamma-subunit. In order to investigate the function of the redox regulatory domain and the physiological significance of redox modulation for higher plants, we designed four mutations in the redox regulatory domain of the gamma-subunit to create functional mimics of the permanently reduced form of the gamma-subunit. While the inability to reduce the regulatory disulfide results in lower photosynthesis and growth, unexpectedly, the results reported here show that inability to reoxidize the dithiol may not be of any direct detriment to plant photosynthetic performance or growth.  相似文献   

10.
Prostaglandin (PG) D(2) ethanolamide (prostamide D(2)) was reduced to 9alpha,11beta-PGF(2) ethanolamide (9alpha,11beta-prostamide F(2)) by PGF synthase, which also catalyzes the reduction of PGH(2) and PGD(2) to PGF(2alpha) and 9alpha,11beta-PGF(2), respectively. These enzyme activities were measured by a new method, the liquid chromatographic-electrospray ionization-mass spectrometry (LC/ESI/MS) technique, which could simultaneously detect the substrate and all products. PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2) were separated on a TSKgel ODS 80Ts column, ionized by electrospray, and detected in the negative mode. Selected ion monitoring (SIM) of m/z 353 ([M-H](-)), 353 ([M-H](-)), 351 ([M-H](-)), 333 ([M-H-H(2)O](-)), 456 ([M+59](-)), and m/z 358 ([M-37](-)) was used for quantifying PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2), respectively. The detection limit for PGF(2alpha) and 9alpha,11beta-PGF(2) was 0.01pmol; that for PGH(2) and PGD(2), 0.1pmol; and that for prostamide D(2) and 9alpha,11beta-prostamide F(2), 0.5 and 0.03pmol, respectively. The LC/ESI/MS technique for measuring PGF synthase activity showed higher sensitivity than other methods. Using this method, we found that Bimatoprost, the ethyl amide analog of 17-phenyl-trinor PGF(2alpha) and an anti-glaucoma agent, inhibited all three reductase activities of PGF synthase when used at a low concentration. These results suggest that Bimatoprost also behaves as a potent PGF synthase inhibitor in addition to having prostamide-like activity.  相似文献   

11.
12.
13.
Polyketide synthase (PKS) enzymes are large multi-domain complexes that structurally and functionally resemble the fatty acid synthases involved in lipid metabolism. Polyketide biosynthesis of secondary metabolites and hence functional PKS genes are widespread among bacteria, fungi and streptophytes, but the Type I was formerly known only from bacteria and fungi. Recently Type I PKS genes were also uncovered in the genomes of some alveolate protists. Here we show that the newly sequenced genomes of representatives of other protist groups, specifically the chlorophytes Ostreococcus tauri, O. lucimarinus, and Chlamydomonas reinhardtii, and the haptophyte Emiliania huxleyi also contain putative modular Type I PKS genes. Based on the patchy phylogenetic distribution of this gene type among eukaryotic microorganisms, the question arises whether they originate from recent lateral gene transfer from bacteria. Our phylogenetic analyses do not indicate such an evolutionary history. Whether Type I PKS genes originated several times independently during eukaryotic evolution or were rather lost in many extant lineages cannot yet be answered. In any case, we show that environmental genome sequencing projects are likely to be a valuable resource when mining for genes resembling protistan PKS I genes.  相似文献   

14.
In order to promote better understanding of the physiological roles of prostaglandin F in the mouse testis, we investigated the protein expression and the cellular localization of the enzymes cyclooxygenase and prostaglandin F synthase that are essential for the production of prostaglandin F, and the binding site, which is the prostaglandin Freceptor (FP). Western blot exhibited the expression of FP protein in wild type mouse testis, and that of prostaglandin F synthase and cyclooxygenase-1 proteins in the both of wild type mouse and FP-deficient mouse testes. The expression of prostaglandin F synthase and cyclooxygenase-1 were detected intensely in Leydig cell-rich fraction, and that of FP was detected equally in Leydig cell-rich fraction and the other fraction. Immunohistochemistry for cyclooxygenase-1 and prostaglandin F synthase demonstrated their co-localization in mouse Leydig cells. Histochemistry for FP demonstrated the localization in Leydig cells and in spermatids of seminiferous tubules. Double histochemical staining confirmed the co-localization of cyclooxygenase-1, prostaglandin F synthase and FP in the Leydig cells. These findings indicate that prostaglandin F may have an effect on the functions of Leyding cells in an autocrine fashion. It implies that prostaglandin F synthase and FP are involved in the control of testosterone release from Leydig cells and in spermatogenesis via the local pathway and the hypothalamo-hypophysial-testis pathway, and affect the testicular function.  相似文献   

15.
In the literature, biological tyrosine nitrations have been reported to depend not only on peroxynitrite but also on nitrite/hydrogen peroxide linked to catalysis by myeloperoxidase. In endotoxin-stimulated RAW 264.7 macrophages, we have detected a major nitrotyrosine positive protein band around 72 kDa and identified it as prostaglandin endoperoxide synthase-2 (PGHS-2). Isolated PGHS-2 in absence of its substrate arachidonate was not only tyrosine-nitrated with peroxynitrite, but also with nitrite/hydrogen peroxide in complete absence of myeloperoxidase. Our data favor an autocatalytic activation of nitrite by PGHS-2 with a subsequent nitration of the essential tyrosine residue in the cyclooxygenase domain. Under inflammatory conditions, nitrite formed via NO-synthase-2 may therefore act as an endogenous regulator for PGHS-2 in stimulated macrophages. Nitration of PGHS-2 by the autocatalytic activation of nitrite further depends on the intracellular concentration of arachidonate since arachidonate reacted competitively with nitrite and could prevent PGHS-2 from nitration when excessively present.  相似文献   

16.
Thioredoxin (Trx)-fold proteins are protagonists of numerous cellular pathways that are subject to thiol-based redox control. The best characterized regulator of thiols in proteins is Trx1 itself, which together with thioredoxin reductase 1 (TR1) and peroxiredoxins (Prxs) comprises a key redox regulatory system in mammalian cells. However, there are numerous other Trx-like proteins, whose functions and redox interactors are unknown. It is also unclear if the principles of Trx1-based redox control apply to these proteins. Here, we employed a proteomic strategy to four Trx-like proteins containing CXXC motifs, namely Trx1, Rdx12, Trx-like protein 1 (Txnl1) and nucleoredoxin 1 (Nrx1), whose cellular targets were trapped in vivo using mutant Trx-like proteins, under conditions of low endogenous expression of these proteins. Prxs were detected as key redox targets of Trx1, but this approach also supported the detection of TR1, which is the Trx1 reductant, as well as mitochondrial intermembrane proteins AIF and Mia40. In addition, glutathione peroxidase 4 was found to be a Rdx12 redox target. In contrast, no redox targets of Txnl1 and Nrx1 could be detected, suggesting that their CXXC motifs do not engage in mixed disulfides with cellular proteins. For some Trx-like proteins, the method allowed distinguishing redox and non-redox interactions. Parallel, comparative analyses of multiple thiol oxidoreductases revealed differences in the functions of their CXXC motifs, providing important insights into thiol-based redox control of cellular processes.  相似文献   

17.
Thioredoxin reductase (TR) is an oxidoreductase responsible for maintaining thioredoxin in the reduced state, thereby contributing to proper cellular redox homeostasis. The C-terminal active site of mammalian TR contains the rare amino acid selenocysteine, which is essential to its activity. Alterations in TR activity due to changes in cellular redox homeostasis are found in clinical conditions such as cancer, viral infection, and various inflammatory processes; therefore, quantification of thioredoxin activity can be a valuable indicator of clinical conditions. Here we describe a new direct assay, termed the SC–TR assay, to determine the activity of TR based on the reduction of selenocystine, a diselenide-bridged amino acid. Rather than being an end-point assay as in older methods, the SC–TR assay directly monitors the continuous consumption of NADPH at 340 nm by TR as it reduces selenocystine. The SC–TR assay can be used in a cuvette using traditional spectrophotometry or as a 96-well plate-based format using a plate reader. In addition, the SC–TR assay is compatible with the use of nonionic detergents, making it more versatile than other methods using cell lysates.  相似文献   

18.
Prostaglandin E synthase (PGES), which converts cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) to PGE2, is known to comprise a group of at least three structurally and biologically distinct enzymes. Two of them are membrane-bound and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli and downregulated by anti-inflammatory glucocorticoids as in the case of COX-2. It is functionally coupled with COX-2 in marked preference to COX-1. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. Recently, mice have been engineered with specific deletions in each of these three PGES enzymes. In this review, we summarize the current understanding of the in vivo roles of PGES enzymes by knockout mouse studies and provide an overview of their biochemical properties.  相似文献   

19.
Prostaglandin H synthase-1 of ram vesicular glands metabolises 5,8,11-eicosatrienoic (Mead) acid to 13R-hydroxy-5,8,11-eicosatrienoic and to 11R-hydroxy-5,8,12-eicosatrienoic in a 5:1 ration. We wanted to determine the metabolism of this fatty acid by prostaglandin H synthase-2. Western blot showed that microsomes of sheep and rabbit placental cotyledons contained prostaglandin H synthase-2, while prostaglandin H synthase-1 could not be detected. Microsomes of sheep cotyledons metabolised [1-14C]5,8,11-eicosatrienoic acid to many polar metabolites and diclofenac (0.05 mM) inhibited the biosynthesis. The two major metabolites were identified as 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids. They were formed in a ratio of 3:2, which was not changed by aspirin (2 mM). 5,8,11-Eicosatrienoic acid is likely oxygenated by removal of the pro-S hydrogen at C-13 and insertion of molecular oxygen at either C-13 or C-11, which is followed by reduction of the peroxy derivatives to 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids, respectively. Prostaglandin H synthase-1 and -2 oxygenate 5,8,11-eicosatrienoic acid only slowly compared with arachidonic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号