首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have examined the effect of caffeine on the concomitant processes of the repair of potentially lethal damage (PLD) and the synthesis of X-ray-induced proteins in the human malignant melanoma cell line, Ul-Mel. Caffeine administered at a dose of 5mM after X radiation not only inhibited PLD repair but also markedly reduced the level of XIP269, a major X-ray-induced protein whose expression has been shown to correlate with the capacity to repair PLD. The expression of the vast majority of other cellular proteins, including seven other X-ray-induced proteins, remained unchanged following caffeine treatment. A possible role for XIP269 in cell cycle delay following DNA damage by X irradiation is discussed.  相似文献   

2.
Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.  相似文献   

3.
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with p22phox and gp91phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.  相似文献   

4.
We demonstrated that enhancement of X-ray-induced apoptosis/rapid cell death by wortmannin accompanied by increased activation of JNK/SAPK in human leukemia MOLT-4 cells. Rapid cell death/apoptosis was determined either by the dye exclusion test or by the appearance of Annexin V-positive cells and cleaved PARP fragments. Enhancement was observed only at higher concentrations of wortmannin, i.e. 1 microM or more. At these high concentrations, both DNA-PK and ATM were inhibited. X-ray-induced phosphorylation of Ser 15 of p53/TP53, accumulation of both p53/TP53 and p21/WAF1/CDKN1A, and phosphorylation of XRCC4 were all suppressed. The enhancement of apoptosis/rapid cell death by wortmannin was prevented by addition of caspase inhibitors, Z-VAD-FMK or Ac-DEVD-CHO, or by transfection and overexpression of mouse Bcl2, which is known as an anti-apoptosis protein. The requirement for a high concentration of wortmannin, i.e. 1 microM or more, indicates that inhibition of both DNA-PK and ATM was necessary for the enhanced apoptosis/rapid cell death. Phosphorylation of AKT/PKB was completely suppressed at a much lower concentration, i.e. 0.1 microM wortmannin, where no enhancement of X-ray-induced apoptosis/rapid cell death was observed. On the other hand, X-ray-induced phosphorylation of JNK and its kinase activity as well as apoptosis/rapid cell death were all significantly enhanced only at high concentrations of wortmannin, i.e. 1 microM or more. Furthermore, the extent of enhancement of both JNK phosphorylation and of apoptosis/rapid cell death by wortmannin was less in Rh1a cells, which are ceramide- and radiation-resistant variant cells compared to the parental MOLT-4 cells. Therefore, activation of the JNK pathway was considered important for the enhancement of X-ray-induced apoptosis/rapid cell death of MOLT-4 cells by wortmannin, because of the requirement for a higher concentration of wortmannin than that required for inhibition of AKT phosphorylation. The suppression of the AKT-dependent pathway by wortmannin may have some underlying role in activating the JNK pathway toward the enhancement of cell death in the current system.  相似文献   

5.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

6.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

7.
Human cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis activity after X-ray irradiation which is suggested to be casually related to reduction in cellular amounts of small ubiquitin-like protein modifier (SUMO-2/SMT-3A). In the present study, an increased level of DNA synthesis activity was found 8 h after X-ray irradiation in HeLa cells with reduction in SUMO-2 amounts by siRNA treatment for SUMO-2. When comparative proteomic analysis was performed between the siRNA and mimic control siRNA treated cells using two-dimensional (2D) electrophoresis and mass spectrometry, three proteins were identified as candidates. Our research focused on Nm23-H1, a nucleoside diphosphate kinase, whose amounts decreased after X-ray irradiation in HeLa cells treated with siRNA for SUMO-2. In the Nm23-H1 siRNA treated cells, induction of DNA synthesis was also detected. Furthermore, in synchronized HeLa cells, DNA synthesis was confirmed in the S phase. Moreover, increased expression of proliferating cell nuclear antigen (PCNA) was observed in Nm23-H1 siRNA treated HeLa cells after X-ray irradiation. In addition, Nm23-H1 was modified with SUMO-2 after X-ray irradiation. The present findings suggest that the reduction of Nm23-H1 is related to the decrease in sumoylation, which in turn, is involved in the induction of DNA synthesis via the regulation of PCNA expression after X-ray irradiation.  相似文献   

8.
Ultraviolet (UV) radiation affects the extracellular matrix (ECM) of the human skin. The small leucine-rich repeat protein fibromodulin interacts with type I and II collagen fibrils, thereby affecting ECM assembly. The aim of this study was to evaluate whether short wave UV (UVB) or long wave UV (UVA) irradiation influences fibromodulin expression. Exponentially growing human fibroblasts (IMR-90 cells) were exposed to increasing doses of UVB (2.5–60 mJ/cm2) or UVA (0.5–10 J/cm2). After UV irradiation fibromodulin, p21 and GADD45 levels were evaluated as well as cell viability, reactive oxygen species formation (ROS) and DNA damage. We found that fibromodulin expression: (i) increased after UVB and UVA irradiation; (ii) was 10-fold higher after UVA (10 J/cm2) versus 5-fold with UVB (10 mJ/cm2); (iii) correlated with reactive oxygen species formation, particularly after UVA; and (iv) was linked to the DNA damage binding protein (DDB1) translocation in the nucleus, particularly after UVB. These results further suggest that the UV-induced fibromodulin increase could counteract the UV-induced connective tissue damage, promoting the assembly of new collagen fibrils.  相似文献   

9.
Expression of the prokaryotic gene for chloramphenicol acetyltransferase (EC 2.3.1.28) (CAT) in primate cells transfected with X-irradiated plasmid pSV2CAT was determined in transient expression assays. CAT expression did not depend upon the presence of supercoiled plasmids, but relaxed circular forms were essential. X-ray conversion of relaxed circles to linear forms paralleled the loss of CAT expression, with identical D0's in the first part of dose-response curves. X-ray-induced loss of supercoiled forms was complete at much lower doses. The D0 for inactivation of CAT expression by X irradiation of the plasmids in 1 mM Tris buffer was 270 Gy; it was 13 Gy for plasmids irradiated in water. The D0's for conversion of pSV2CAT to relaxed circle forms were only one-seventh as large as the D0's for CAT inactivation after X-ray in water or in 1 mM Tris buffer. Expression of the CAT gene in some representative repair-deficient human fibroblasts transfected with X-irradiated pSV2CAT was less than in monkey CV-1 cells or cell lines from normal human subjects. These results demonstrate a novel means to study low levels of X-ray damage in DNA correlating specific X-ray damage in the DNA with expression of the gene in unirradiated primate cells.  相似文献   

10.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

11.
Recently developed heavy ion irradiation therapy using a carbon beam (CB) against systemic malignancy has numerous advantages. However, the clinical results of CB therapy against glioblastoma still have room for improvement. Therefore, we tried to clarify the molecular mechanism of CB-induced glioma cell death. T98G and U251 human glioblastoma cell lines were irradiated by CB, and caspase-dependent apoptosis was induced in both cell lines in a dose-dependent manner. Knockdown of Bax (BCL-2-associated X protein) and Bak (BCL-2-associated killer) and overexpression of Bcl-2 or Bcl-xl (B-cell lymphoma-extra large) showed the involvement of Bcl-2 family proteins upstream of caspase activation, including caspase-8, in CB-induced glioma cell death. We also detected the activation of extracellular signal-regulated kinase (ERK) and the knockdown of ERK regulator mitogen-activated protein kinase kinase (MEK)1/2 or overexpression of a dominant-negative (DN) ERK inhibited CB-induced glioma cell death upstream of the mitochondria. In addition, application of MEK-specific inhibitors for defined periods showed that the recovery of activation of ERK between 2 and 36 h after irradiation is essential for CB-induced glioma cell death. Furthermore, MEK inhibitors or overexpression of a DN ERK failed to significantly inhibit X-ray-induced T98G and U251 cell death. These results suggested that the MEK–ERK cascade has a crucial role in CB-induced glioma cell death, which is known to have a limited contribution to X-ray-induced glioma cell death.  相似文献   

12.
Escherichia coli cells grown to logarithmic phase in, and plated on, rich medium (yeast extract-nutrient broth) were more resistant to X rays, ultraviolet (uv) radiation, and methyl methanesulfonate (MMS) than cells grown in, and plated on, minimal medium. We have called this enhanced survival capability medium-dependent resistance (MDR). The magnitude of MDR observed after oxic X irradiation was greater than that observed after anoxic X irradiation, uv irradiation, or MMS treatment. MDR was not observed in stationary-phase cells with X or uv radiation. MDR was associated with an increased ability to repair X-ray-induced DNA single-strand breaks, and with reduced X-ray-induced DNA degradation and protein synthesis retardation. Postirradiation protein synthesis was concluded to be critical in allowing the high X-ray survival associated with MDR, because of the large radiosensitization caused by a postirradiation growth medium shift down or treatment with rifampicin (RIF), recA protein must be at least one of the proteins whose synthesis is critical to MDR, as judged by the absence of MDR or a RIF effect in X-irradiated recA and lexA mutants. The results with X-irradiated temperature-conditional recA cells suggest that it is only after cells have been damaged that the recA gene plays a role in MDR.  相似文献   

13.
Pigment epithelium-derived factor (PEDF) exerts atheroprotective effects both in cell culture and animal models through its anti-oxidative and anti-inflammatory properties. Caveolin-1 (Cav), a major protein component of caveolae in endothelial cells (ECs), plays a role in the progression of atherosclerosis. However, effects of PEDF on Cav-exposed ECs remain unknown. In this study, we examined whether and how PEDF could inhibit the Cav-induced inflammatory and thrombogenic reactions in human umbilical vein ECs (HUVECs). Surface plasmon resonance revealed that PEDF bound to Cav at the dissociation constant of 7.36 × 10−7 M. Further, one of the major Cav-interacting proteins in human serum was identified as PEDF by peptide mass fingerprinting analysis using BIAcore 1000 combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Exogenously added Cav was taken up into the membrane fraction of HUVECs and dose-dependently increased monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1) and plasminogen activator inhibitor-1 (PAI-1) mRNA levels, all of which were blocked by the simultaneous treatment with 10 nM PEDF. Small interfering RNAs directed against Cav decreased endogenous Cav levels and suppressed gene expression of MCP-1, VCAM-1 and PAI-1 in HUVECs. This study indicates that PEDF binds to Cav and could block the inflammatory and thrombogenic reactions in Cav-exposed HUVECs. Our present study suggests that atheroprotective effects of PEDF might be partly ascribed to its Cav-interacting properties.  相似文献   

14.
Parathyroid hormone (PTH) functions as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. In this study, we investigated the role of PTH in the regulation of the cell cycle in human colon adenocarcinoma Caco-2 cells. Flow cytometry analysis revealed that PTH (10− 8 M, 12-24 h) treatment increases the number of cells in the G0/G1 phase and diminishes the number in both phases S and G2/M. In addition, analysis by Western blot showed that the hormone increases the expression of the inhibitory protein p27Kip1 and diminishes the expression of cyclin D1, cyclin D3 and CDK6. However, the amounts of CDK4, p21Cip1, p15INK4B and p16INK4A were not different in the absence or presence of PTH. Inhibitors of PKC (Ro-318220, bisindolylmaleimide and chelerythine), but not JNK (SP600125) and PP2A (okadaic acid and calyculin A), reversed PTH response in Caco-2 cells. Taken together, our results suggest that PTH induces G0/G1 phase arrest of Caco-2 intestinal cells and changes the expression of proteins involved in cell cycle regulation via the PKC signaling pathway.  相似文献   

15.
Culture of human cells with human interferon alpha and beta (IFNA and IFNB) results in increased resistance of the cells to cell killing by X rays. To identify candidate genes responsible for the IFN-induced X-ray resistance, we searched for genes whose expression levels are increased in human RSa cells treated with IFNA, using an mRNA differential display method and Northern blotting analysis. RSa cells, which showed increased survival (assayed by colony formation) after X irradiation when they were treated with IFNA prior to irradiation, showed increased expression levels of LEU13 (IFITM1) mRNA after IFNA treatment alone. In contrast, IF(r) and F-IF(r) cells, both of which are derived from RSa cells, showed increased X-ray resistance and high constitutive LEU13 mRNA expression levels compared to the parental RSa cells. Furthermore, the IFNA-induced resistance of RSa cells to killing by X rays was suppressed by antisense oligonucleotides for LEU13 mRNA. LEU13, a leukocyte surface protein, was previously reported to mediate the actions of IFN such as inhibition of cell proliferation. The present results suggest a novel role of LEU13 different from that in the inhibition of cell proliferation, involved in IFNA-induced refractoriness of RSa cells to X rays.  相似文献   

16.
We have reported that heat shock protein 27 (HSP27) and annexin II are involved in the protection of human cells against UVC-induced cell death. In this study we tried to confirm the combined roles of HSP27 and annexin II in cell death after UVC irradiation. In RSa cells with sensitivity to UVC, expression of annexin II decreased after UVC irradiation, but not in APr-1 cells with increased resistance to UVC. HSP27 siRNA-transfected APr-1 cells were sensitized to UVC lethality and showed decreased annexin II expression after UVC irradiation. In contrast, transfection of RSa cells with HSP27 cDNA increased their resistance to UVC lethality and caused increased annexin II expression. Furthermore, over-production of annexin II in RSa cells resulted in increased resistance to UVC lethality. This study indicates the involvement of cellular HSP27 expression in the UVC susceptibility of human cells, which occurs in association with regulation of annexin II expression.  相似文献   

17.
Securin has been shown to regulate genomic stability; nevertheless, the role of securin on the cytotoxicity after radiation is still unclear. Exposure to 1–10 Gy X-ray radiation induced cell death in RKO colorectal cancer cells. The protein levels of securin, p53, and p21 were elevated by radiation. The proteins of phosphorylation of p53 at serine-15, which located on the nuclei of cancer cells, were highly induced by radiation. However, radiation increased securin proteins, which located on both of nuclei and cytoplasma in RKO cells. The p53-wild type colorectal cancer cells were more susceptible on cytotoxicity than the p53-mutant cells following exposure to radiation. Besides, the existence of securin in colorectal cancer cells induced higher apoptosis than the securin-null after radiation. Securin proteins were elevated by radiation in the p53-wild type and -mutant cells; furthermore, radiation raised the p53 protein expression in both the securin-wild type and -null cells. As a whole, these findings suggest that the existence of securin promotes apoptosis via a p53-indpendent pathway after radiation in human colorectal cancer cells.  相似文献   

18.
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) increases expression of CD38 (a membrane-associated bifunctional enzyme regulating cyclic ADP ribose), and enhances agonist-induced intracellular Ca2 + ([Ca2 +]i) responses in human airway smooth muscle (ASM). We previously demonstrated that caveolae and their constituent protein caveolin-1 are important for ASM [Ca2 +]i regulation, which is further enhanced by TNFα. Whether caveolae and CD38 are functionally linked in mediating TNFα effects is unknown. In this regard, whether the related cavin proteins (cavin-1 and -3) that maintain structure and function of caveolae play a role is also not known. In the present study, we hypothesized that TNFα effects on CD38 expression and function in human ASM involve caveolae. Caveolar fractions from isolated human ASM cells expressed CD38 and its expression was upregulated by exposure to 20 ng/ml TNFα (48 h). ASM cells expressed cavin-1 and cavin-3, which were also upregulated by TNFα. Knockdown of caveolin-1, cavin-1 or cavin-3 (using siRNA) all significantly reduced CD38 expression and ADP-ribosyl cyclase activity in the presence or absence of TNFα. Furthermore, caveolin-1, cavin-1 and cavin-3 siRNAs reduced [Ca2 +]i responses to histamine under control conditions, and blunted the enhanced [Ca2 +]i responses in TNFα-exposed cells. These data demonstrate that CD38 is expressed within caveolae and its function is linked to the caveolar regulatory proteins caveolin-1, cavin-1 and -3. The link between caveolae and CD38 is further enhanced during airway inflammation demonstrating the important role of caveolae in regulation of [Ca2 +]i and contractility in the airway.  相似文献   

19.
Sustained hypoxia alters the expression of numerous proteins and predisposes individuals to Alzheimer’s disease (AD). We have previously shown that hypoxia in vitro alters Ca2+ homeostasis in astrocytes and promotes increased production of amyloid β peptides (Aβ) of AD. Indeed, alteration of Ca2+ homeostasis requires amyloid formation. Here, we show that electrogenic glutamate uptake by astrocytes is suppressed by hypoxia (1% O2, 24 h) in a manner that is independent of amyloid β peptide formation. Thus, hypoxic suppression of glutamate uptake and expression levels of glutamate transporter proteins EAAT1 and EAAT2 were not mimicked by exogenous application of amyloid β peptide, or by prevention of endogenous amyloid peptide formation (using inhibitors of either β or γ secretase). Thus, dysfunction in glutamate homeostasis in hypoxic conditions is independent of Aβ production, but will likely contribute to neuronal damage and death associated with AD following hypoxic events.  相似文献   

20.
The fates of Rat1a cells expressing FosB and DeltaFosB as fusion proteins (ER-FosB, ER-DeltaFosB) with the ligand binding domain of human estrogen receptor were examined. The binding of estrogen to the fusion proteins resulted in their nuclear translocation and triggered cell proliferation, and thereafter delayed cell death was observed only in cells expressing ER-DeltaFosB. The proliferation of Rat1a cells, but not cell death triggered by ER-DeltaFosB, was completely abolished by butyrolactone I, an inhibitor of cycline-dependent kinases, and was partly suppressed by antisense oligonucleotides against galectin-1, whose expression is induced after estrogen administration. The cell death was accompanied by the activation of caspase-3 and -9, the fragmentation of the nuclear genome and cytochrome c release from the mitochondria, and was suppressed by zDEVD-fmk and zLEHD-fmk but not zIETD-fmk. The cell death was not suppressed by exogenous His-PTD-Bcl-x(L) at all, suggesting involvement of a Bcl-x(L)-resistant pathway for cytochrome c release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号