共查询到20条相似文献,搜索用时 0 毫秒
1.
Decreased ER-associated degradation of alpha-TCR induced by Grp78 depletion with the SubAB cytotoxin
Lass A Kujawa M McConnell E Paton AW Paton JC Wójcik C 《The international journal of biochemistry & cell biology》2008,40(12):2865-2879
HeLa cells stably expressing the α chain of T-cell receptor (αTCR), a model substrate of ER-associated degradation (ERAD), were used to analyze the effects of BiP/Grp78 depletion by the SubAB cytotoxin. SubAB induced XBP1 splicing, followed by JNK phosphorylation, eIF2α phosphorylation, upregulation of ATF3/4 and partial ATF6 cleavage. Other markers of ER stress, including elements of ERAD pathway, as well as markers of cytoplasmic stress, were not induced. SubAB treatment decreased absolute levels of αTCR, which was caused by inhibition of protein synthesis. At the same time, the half-life of αTCR was extended almost fourfold from 70 min to 210 min, suggesting that BiP normally facilitates ERAD. Depletion of p97/VCP partially rescued SubAB-induced depletion of αTCR, confirming the role of VCP in ERAD of αTCR. It therefore appears that ERAD of αTCR is driven by at least two different ATP-ase systems located at two sides of the ER membrane, BiP located on the lumenal side, while p97/VCP on the cytoplasmic side. While SubAB altered cell morphology by inducing cytoplasm vacuolization and accumulation of lipid droplets, caspase activation was partial and subsided after prolonged incubation. Expression of CHOP/GADD153 occurred only after prolonged incubation and was not associated with apoptosis. 相似文献
2.
Kny M Standera S Hartmann-Petersen R Kloetzel PM Seeger M 《The Journal of biological chemistry》2011,286(7):5151-5156
Accumulation of aberrant proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response pathway that helps the cell to survive under these stress conditions. Herp is a mammalian ubiquitin domain protein, which is strongly induced by the unfolded protein response. It is involved in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We found that upon exposure of cells to ER stress, elevation of Herp steady state levels is accompanied by an enhanced association of Herp with pre-existing Hrd1. Hrd1-associated Herp is rapidly degraded and substituted by de novo synthesized Herp, suggesting a continuous turnover of the protein at Hrd1 complexes. Further analysis revealed the presence of multiple Hrd1 copies in a single complex enabling binding of a variable number of Herp molecules. Efficient ubiquitylation of the Hrd1-specific ERAD substrate α1-antitrypsin null Hong Kong (NHK) required the presence of the Herp UBL domain, which was also necessary for NHK degradation. In summary, we propose that binding of Herp to Hrd1-containing ERAD complexes positively regulates the ubiquitylation activity of these complexes, thus permitting survival of the cell during ER stress. 相似文献
3.
Previously, we showed that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we investigated the mechanism of ubiquilin's protective effect. Immunofluorescence microscopy and immunoprecipitation studies indicated that ubiquilin colocalized and coimmunoprecipitated more with GFP-huntingtin-exon-1-fusion proteins containing a 74-polyglutamine tract than with GFP-huntingtin-fusion proteins containing a 28-polyglutamine tract or with GFP protein alone. Furthermore, overexpression of ubiquilin selectively enhanced the turnover of the expanded GFP-huntingtin-fusion protein. These results suggest that elevating ubiquilin levels could aid in the selective disposal of potentially toxic expanded polyglutamine proteins that are thought to cause several human diseases. 相似文献
4.
Ilaria Fregno 《Critical reviews in biochemistry and molecular biology》2019,54(2):153-163
About 40% of the eukaryotic cell’s proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes. 相似文献
5.
Attila L. Kovács Per O. Seglen 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,676(2):213-220
Nutritional control of protein degradation in isolated rat hepatocytes can take place in the absence of protein synthesis. Suppression of degradation by amino acids (step-up) is unaffected and the enhanced degradation seen upon amino acid deprivation (step-down) is only partially inhibited by cycloheximide at a concentration (10?3 M) which inhibits protein synthesis virtually completely. Protein degradation per se is, however, inhibited by cycloheximide as well as by puromycin, apparently at least in part by mechanisms additional or unrelated to their effect on protein synthesis. Several puromycin analogues (methylaminopurines) are stronger inhibitors of protein degradation than of protein synthesis, most notably puromycin aminonucleoside and 6-dimethylaminopurine riboside (N6, N6-dimethyladenosine). The latter compounds appear to specifically inhibit cellular autophagy, since neither the degradation of endocytosed protein (asialofetuin) nor the extralysosoma (amino acid-, propylamine- and leupeptin-resistant) degradation are affected. 相似文献
6.
Seong-Ok Lee Kwangmin Cho Sunglim Cho Ilkwon Kim Changhoon Oh Kwangseog Ahn 《The EMBO journal》2010,29(2):363-375
The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3δ but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery. 相似文献
7.
We undertook a growth-based screen exploiting the degradation of CTL*, a chimeric membrane-bound ERAD substrate derived from soluble lumenal CPY*. We screened the Saccharomyces cerevisiae genomic deletion library containing approximately 5000 viable strains for mutants defective in endoplasmic reticulum (ER) protein quality control and degradation (ERAD). Among the new gene products we identified Yos9p, an ER-localized protein previously involved in the processing of GPI anchored proteins. We show that deficiency in Yos9p affects the degradation only of glycosylated ERAD substrates. Degradation of non-glycosylated substrates is not affected in cells lacking Yos9p. We propose that Yos9p is a lectin or lectin-like protein involved in the quality control of N-glycosylated proteins. It may act sequentially or in concert with the ERAD lectin Htm1p/Mnl1p (EDEM) to prevent secretion of malfolded glycosylated proteins and deliver them to the cytosolic ubiquitin-proteasome machinery for elimination. 相似文献
8.
Protein localization within cells regulates accessibility for interactions with co-factors and substrates. The endoplasmic reticulum (ER) BiP co-factor ERdj4 is up-regulated by ER stress and has been implicated in ER-associated degradation (ERAD) of multiple unfolded secretory proteins. Several other ERdj family members tend to interact selectively with nascent proteins, presumably because those ERdj proteins associate with the Sec61 translocon that facilitates entry of nascent proteins into the ER. How ERdj4 selects and targets terminally misfolded proteins for destruction remains poorly understood. In this study, we determined properties of ERdj4 that might aid in this function. ERdj4 was reported to retain its signal sequence and to be resistant to mild detergent extraction, suggesting that it was an integral membrane protein. However, live cell photobleaching analyses of GFP-tagged ERdj4 revealed that the protein exhibits diffusion coefficients uncommonly high for an ER integral membrane protein and more similar to the mobility of a soluble luminal protein. Biochemical characterization established that the ERdj4 signal sequence is cleaved to yield a soluble protein. Importantly, we found that both endogenous and overexpressed ERdj4 associate with the integral membrane protein, Derlin-1. Our findings now directly link ERdj4 to the ERAD machinery and suggest a model in which ERjd4 could help recruit clients from throughout the ER to ERAD sites. 相似文献
9.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro. 相似文献
10.
11.
12.
Olivari S Cali T Salo KE Paganetti P Ruddock LW Molinari M 《Biochemical and biophysical research communications》2006,349(4):1278-1284
Proteins expressed in the endoplasmic reticulum (ER) are covalently modified by co-translational addition of pre-assembled core glycans (glucose(3)-mannose(9)-N-acetylglucosamine(2)) to asparagines in Asn-X-Ser/Thr motifs. N-Glycan processing is essential for protein quality control in the ER. Cleavages and re-additions of the innermost glucose residue prolong folding attempts in the calnexin cycle. Progressive loss of mannoses is a symptom of long retention in the ER and elicits preparation of terminally misfolded polypeptides for dislocation into the cytosol and proteasome-mediated degradation. The ER stress-induced protein EDEM1 regulates disposal of folding-defective glycoproteins and has been described as a mannose-binding lectin. Here we show that elevation of the intralumenal concentration of EDEM1 accelerates ER-associated degradation (ERAD) by accelerating de-mannosylation of terminally misfolded glycoproteins and by inhibiting formation of covalent aggregates upon release of terminally misfolded ERAD candidates from calnexin. Acceleration of Man(9) or Man(5)N-glycans dismantling upon overexpression was fully blocked by substitution in EDEM1 of one catalytic residue conserved amongst alpha1,2-mannosidases, thus suggesting that EDEM1 is an active mannosidase. This mutation did not affect the chaperone function of EDEM1. 相似文献
13.
14.
A new kind of affinity electrophoresis called functional affinity electrophoresis (FAEP) is a technique used to separate and/or capture proteins according to their functions in a native polyacrylamide gel. Protein A:immunoglobulin G, avidin:biotin, antibody:antigen, and concanavalin A:glycoprotein interactions are used to demonstrate this technique. Protein A, avidin, monoclonal anti-bovine serum albumin (BSA) antibody, and concanavalin A are embedded in distinct regions of a 7.5% native polyacrylamide gel. Some of each of the embedded proteins get covalently and/or noncovalently incorporated into the gel matrix network. Under electrophoresis conditions, these proteins do not show significant electrophoretic mobility or they migrate in a direction opposite to the protein analytes, as in avidin. We clearly observe that polyclonal anti-human myoglobin antibody, biotinylated insulin, BSA, and ovalbumin (glycoprotein) are captured and separated in distinct regions of a FAEP gel by protein A, avidin, monoclonal anti-BSA antibody, and concanavalin A, respectively. 相似文献
15.
Lixin Mi Nanqin Gan Fung-Lung Chung 《Biochemical and biophysical research communications》2009,388(2):456-1743
Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins. 相似文献
16.
Doherty MK Brownridge P Owen MA Davies SJ Young IS Whitfield PD 《Journal of Proteomics》2012,75(14):4471-4477
In order to study the protein dynamics in the tissues of fish we have developed a proteomics-based strategy to determine the rates of synthesis and degradation of individual proteins. We have demonstrated the feasibility of this approach by measuring the turnover of multiple isoforms of parvalbumin (β1-7) in the skeletal muscle of common carp (Cyprinus carpio). A stable isotope-labelled amino acid ([(2)H(7)] l-leucine) was administered to the carp via the diet and its incorporation into the isoforms of parvalbumin in muscle over time was monitored by LC-MS analysis of signature peptides. The relative isotope abundance was calculated and used to deconvolute the data. The β7 parvalbumin isoform had a rate of synthesis that was greater than the rate of degradation. In contrast the rate of degradation of the β5 isoform exceeded its rate of synthesis, whilst the analysis revealed that the other parvalbumin β-isoforms (β1, β2, β3, β4 and β6) had a rate of synthesis that was equal to the rate of degradation. This work has addressed a number of technical challenges and represents the first study to use proteomic approaches to measure the turnover of individual proteins in fish. 相似文献
17.
Wood DD She YM Freer AD Harauz G Moscarello MA 《Archives of biochemistry and biophysics》2002,405(1):137-146
Equine myelin basic protein (MBP) has been isolated from spinal cord and shown to consist of a number of components (charge isomers) by alkaline-urea gel electrophoresis. Mass analyses of several of these components showed that each was posttranslationally modified and some have been identified. Component 1, the most cationic charge isomer, was sequenced by a combination of liquid chromatography and mass spectrometry of peptides obtained by proteolytic digestion. At 172 residues it is slightly larger than the bovine (169) and the human (170). A major difference between bovine and equine sequences was the replacement of AQGH (bovine residues 76-79) by SRDG (equine). A number of other replacements involving single amino acids were also found. Methylated arginine (residue 108 equine) was found as both the mono- and the dimethylated derivative and represents the first MS/MS evidence for this modification in any MBP. 相似文献
18.
Fawcett J Permana PA Levy JL Duckworth WC 《Archives of biochemistry and biophysics》2007,468(1):128-133
Proteins are vital to the overall structure of cells and to the function of cells in the form of enzymes. Thus the control of protein metabolism is among the most important aspects of cellular metabolism. Insulin’s major effect on protein metabolism in the adult animal is inhibition of protein degradation. This is via inhibition of proteasome activity via an interaction with insulin-degrading enzyme (IDE). IDE is responsible for the majority of cellular insulin degradation. We hypothesized that a reduction in IDE would reduce insulin degradation and insulin’s ability to inhibit protein degradation. HepG2 cells were transfected with siRNA against human IDE and insulin degradation and protein degradation measured. Both IDE mRNA and protein were reduced by >50% in the IDE siRNA transfected cells. Insulin degradation was reduced by approximately 50%. Cells were labeled with [3H]-leucine to investigate protein degradation. Short-lived protein degradation was unchanged in the cells with reduced IDE expression. Long-lived and very-long-lived protein degradation was reduced in the cells with reduced IDE expression (14.0 ± 0.16 vs. 12.5 ± 0.07%/4 h (long-lived), 9.6 ± 2.2% vs. 7.3 ± 0.2%/3 h (very-long-lived), control vs. IDE transfected, respectively, P < 0.005). The inhibition of protein degradation by insulin was reduced 37-76% by a decreased expression of IDE in HepG2 cells. This shows that IDE is involved in cellular insulin metabolism and provides further evidence that insulin inhibits protein degradation via an interaction with IDE. 相似文献
19.
Hanna J Schütz A Zimmermann F Behlke J Sommer T Heinemann U 《The Journal of biological chemistry》2012,287(11):8633-8640
In yeast, the membrane-bound HMG-CoA reductase degradation (HRD) ubiquitin-ligase complex is a key player of the ER-associated protein degradation pathway that targets misfolded proteins for proteolysis. Yos9, a component of the luminal submodule of the ligase, scans proteins for specific oligosaccharide modifications, which constitute a critical determinant of the degradation signal. Here, we report the crystal structure of the Yos9 domain that was previously suggested to confer binding to Hrd3, another component of the HRD complex. We observe an αβ-roll domain architecture and a dimeric assembly which are confirmed by analytical ultracentrifugation of both the crystallized domain and full-length Yos9. Our binding studies indicate that, instead of this domain, the N-terminal part of Yos9 including the mannose 6-phosphate receptor homology domain mediates the association with Hrd3 in vitro. Our results support the model of a dimeric state of the HRD complex and provide first-time evidence of self-association on its luminal side. 相似文献
20.
Ji Young Lee 《Biochemical and biophysical research communications》2009,390(4):1361-1366
We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis. These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time. 相似文献