首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a mechano-calcium channel, polycystin2 (PC2) play an important role in the response of renal epithelial cells to fluid flow shear stress. In bone tissue, osteocytes are well known as the main mechanosensory cells, and sensitive to fluid flow stimulus in vitro. In the study, we investigated the effects of oscillating fluid flow (OFF, 2 h, 1 Hz, 1.0 Pa) on the release of Nitric Oxide (NO) and ProstaglandinE2 (PGE2), and the role of PC2 on the release. Our findings demonstrate that PC2 expression increases after 2 h of OFF, and silencing PC2 by RNAi inhibits downstream NO production and iNOS expression, but does not affect the response of PGE2 to OFF.  相似文献   

2.
Nitric oxide production by bone cells is fluid shear stress rate dependent   总被引:9,自引:0,他引:9  
Shear stress due to mechanical loading-induced flow of interstitial fluid through the lacuno-canalicular network is a likely signal for bone cell adaptive responses. Moreover, the rate (determined by frequency and magnitude) of mechanical loading determines the amount of bone formation. Whether the bone cells' response to fluid shear stress is rate dependent is unknown. Here we investigated whether bone cell activation by fluid shear stress is rate dependent. MC3T3-E1 osteoblastic cells were subjected for 15 min to fluid shear stress of varying frequencies and amplitudes, resulting in peak fluid shear stress rates ranging from 0 to 39.6 Pa-Hz. Nitric oxide production, a parameter for bone cell activation, was found to be linearly dependent on the fluid shear stress rate; the slope was steepest at 5 min (0.11 Pa-Hz(-1)) and decreased to 0.03 Pa-Hz(-1) at 15 min. We conclude that the fluid shear stress rate is an important parameter for bone cell activation.  相似文献   

3.
Mitochondrial dysfunction has been implicated in the regulation of myofiber loss during aging, possibly by apoptotic pathways. However, the mitochondrial-mediated pathway of apoptosis by cytochrome c in skeletal muscle remains ambiguous. To understand this, we have studied the upstream and downstream events of cytochrome c release, and assessed the efficacy of carnitine and lipoic acid cosupplementation. The results show that elevated levels of cytosolic cytochrome c activate apoptosis in aged rats, and was confirmed further by in vitro caspase-3 assay. Interestingly, the exogenous addition of cytochrome c results in a much higher increase of caspase-3 activity in aged treated rats than age-matched control rats, strongly suggesting that cytochrome c is a limiting factor for caspase-3 activation in the cytosol. Carnitine and lipoic acid supplement decreased apoptosis in aged rats by maintaining mitochondrial membrane integrity and thereby preventing further loss of cytochrome c in vivo. Furthermore, the upregulation of p53 observed in aged rats is attributed to the loss of outer mitochondrial membrane integrity and subsequent release of cytochrome c through BH3-only proteins. In conclusion, the p53-dependent activation of the mitochondrial-cytochrome c pathway of apoptosis in the present study suggests the existence of cross talk between mitochondria and nucleus. However, the exact molecular mechanism remains to be explored. Oral supplements of carnitine and lipoic acid play an antiapoptotic role in aged rat skeletal muscle by protecting mitochondrial membrane integrity.  相似文献   

4.
5.
6.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

7.
Abstract: To clarify mechanisms of neuronal death in the postischemic brain, we examined whether astrocytes exposed to hypoxia/reoxygenation exert a neurotoxic effect, using a coculture system. Neurons cocultured with astrocytes subjected to hypoxia/reoxygenation underwent apoptotic cell death, the effect enhanced by a combination of interleukin-1β with hypoxia. The synergistic neurotoxic activity of hypoxia and interleukin-1β was dependent on de novo expression of inducible nitric oxide synthase (iNOS) and on nitric oxide (NO) production in astrocytes. Further analysis to determine the neurotoxic mechanism revealed decreased Bcl-2 and increased Bax expression together with caspase-3 activation in cortical neurons cocultured with NO-producing astrocytes. Inhibition of NO production in astrocytes by N G-monomethyl- l -arginine, an inhibitor of NOS, significantly inhibited neuronal death together with changes in Bcl-2 and Bax protein levels and in caspase-3-like activity. Moreover, treatment of neurons with a bax antisense oligonucleotide inhibited the caspase-3-like activation and neuronal death induced by an NO donor, sodium nitroprusside. These data suggest that NO produced by astrocytes after hypoxic insult induces apoptotic death of neurons through mechanisms involving the caspase-3 activation after down-regulation of BCl-2 and up-regulation of Bax protein levels.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) is known to have important functions in neuronal survival, differentiation, and plasticity. In addition to its role as a survival-promoting factor, BDNF reportedly can enhance neuronal cell death in some cases, for example, the death caused by excitotoxicity or glucose deprivation. The cellular mechanism of the death-enhancing effect of BDNF remains unknown, in contrast to that of its survival-promoting effect. In this work, we found that BDNF markedly accelerated the nitric oxide (NO) donor-induced death of cultured embryonic cortical neurons. BDNF increased the number of cells with nuclear condensation and DNA fragmentation 24 h after treatment with the NO donor, but it did not change the number of those cells 36 h after the treatment. The BDNF-accelerated death of cortical neurons was inhibited by the addition of actinomycin D or cycloheximide. These results suggest that BDNF can accelerate apoptotic cell death elicited by NO donor. TrkB-IgG and K252a blocked the BDNF-induced acceleration of the death, indicating that the death-accelerating effect by BDNF is mediated by TrkB. In addition, the BDNF-accelerated apoptosis was inhibited by the addition of SB202190 and SB203580, specific inhibitors of p38 mitogen-activated protein kinase (MAPK), and U0126, a specific inhibitor of MAPK/ERK kinase 1, indicating that the activation of both p38 MAPK and ERK is involved in the signaling cascade of the BDNF-accelerated, NO donor-induced apoptosis.  相似文献   

9.
10.
Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs. Abhijit G. Banerjee and Velliyur K. Gopalakrishnan—contributed equally.  相似文献   

11.
12.
Ischemia-reperfusion injury (IRI) is characterized by ATP depletion in the ischemic phase, followed by a rapid increase in reactive oxygen species, including peroxynitrite in the reperfusion phase. In this study, we examined the role of peroxynitrite on cytotoxicity and apoptosis in an in vitro model of ATP depletion-recovery. Porcine proximal tubular epithelial (LLC-PK1) cells were ATP depleted for either 2 h (2/2) or 4 h (4/2) followed by recovery in serum free medium for 2 h. A subset of cells was treated with 100 μM of the peroxynitrite scavenger, iron (III) tetrakis (N-methyl-4′pyridyl) porphyrin pentachloride (FeTMPyP) 30 min prior to and during treatment/recovery. Treatment with FeTMPyP reduced cytotoxicity and superoxide levels at both the 2/2 and 4/2 time points, however FeTMPyP decreased nitric oxide only at the 2/2 time point. FeTMPyP also partially blocked caspase-3 and caspase-8 activation at both 2/2 and 4/2 time points. At the 4/2 time point, FeTMPyP also partially inhibited the ATP depletion mediated increase in tumor necrosis factor alpha (TNF-α) and decreased Bax and FasL gene expression. These data show that peroxynitrite induces apoptosis by activation of multiple pathways depending on length and severity of insult following ATP depletion-recovery.  相似文献   

13.
In the present study, we investigated the apoptotic effects of isosclerone from marine-derived fungi on human breast cancer MCF-7 cells. Treatment with isosclerone exhibited a characteristic feature of apoptosis including significant cytotoxicity and DNA fragmentation in cancer cells. In addition, The apoptosis induction abilities of the isosclerone was studied by analyzing the expression of caspase-3, -8 and -9, Bcl-2 family, NF-κ-B P50, P65, and IKK proteins. Western blot and RT-PCR analysis have indicated that isosclerone induce cancer cells apoptosis through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our data demonstrate that isosclerone specifically binds to crystal structure of apoptosis regulator BCL-2 and pseudo-activated procaspase-3 proteins through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our proof-of-principle study should have a positive impact on future drug discovery.  相似文献   

14.
Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3β (GSK-3β). Otherwise, recent studies suggest that sustained GSK-3β inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3β signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3β on the inhibitory serine 9 residue; (2) the GSK-3β inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3β/p53 complexes. Moreover, the overexpression of an inactivated GSK-3β mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3β inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3β and p53 on CD95 gene expression.  相似文献   

15.
Regulation of neuronal proliferation and differentiation by nitric oxide   总被引:16,自引:0,他引:16  
Many studies have revealed the free radical nitric oxide (NO) to be an important modulator of vascular and neuronal physiology. It also plays a developmental role in regulating synapse formation and patterning. Recent studies suggest that NO may also mediate the switch from proliferation to differentiation during neurogenesis. Many mechanisms of this response are conserved between neuronal precursor cells and the cells of the vascular system, where NO can inhibit the proliferative response of endothelial and smooth-muscle cells to injury. In cultured neuroblastoma cells, NO synthase (NOS) expression is increased in the presence of various growth factors and mitogens. Subsequent production of NO leads to cessation of cell division and the acquisition of a differentiated phenotype. The inhibitory action of NO on neuroblast proliferation has also been demonstrated in vivo for vertebrate and invertebrate nervous systems, as well as in the adult brain. Potential downstream effectors of NO include the second messenger cyclic GMP, activation of the tumor-suppressor genes p53 and Rb, and the cyclin-dependent kinase inhibitor p21. These studies highlight a new role for NO in the nervous system, as a coordinator of proliferation and patterning during neural development and adult neurogenesis.  相似文献   

16.
By using a mouse NIH3T3 derivate designed 7-4 harboring the inducible Ha-ras oncogene, we demonstrated the close relationship between Ha-ras expression level and sensitization of 5-flurouracil (5-FU)-treated cells. Further studies revealed that the cells susceptible to 5-FU treatment died of apoptosis, which was demonstrated by caspase-3 activation, loss of mitochondria membrane potential (MMP), and DNA fragmentation. The 7-4 cells coexpressing dominant negative Ras (Ras(Asn17)), dominant negative Raf-1 (Raf-1(CB4)), Bcl-2, or active form of phosphatidylinositol 3-kinase (PI3K) became resistant to 5-FU, and apoptosis was prevented. In contrast, the cells coexpressing dominant negative Rac 1 (Rac1(Asn17)) or dominant negative Rho A (RhoA(Asn19)) showed no change of sensitivity to 5-FU. These results indicate that Ras, Bcl-2, as well as Raf-1 and PI3K pathways play pivotal roles in 5-FU-induced apoptosis under Ha-ras-overexpressed condition. Aberrant levels of cyclin E and p21(Cip/WAF-1) expression as well as Cdc 2 phosphorylation at Tyrosine 15 suggest that perturbation of G1/S and G2/M transitions in cell cycle might be responsible for 5-FU triggered apoptosis. Sensitization of Ha-ras-related cells to 5-FU was also demonstrated in human bladder cancer cells. Through understanding the mechanism of 5-FU induced apoptosis in tumor cells, a new direction toward the treatment of Ha-ras oncogene-related cancers with 5-FU at more optimal dosages is possible and combinational therapy with other drugs that suppress PI3K and Bcl-2 activities can also be considered.  相似文献   

17.
Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3beta (GSK-3beta). Otherwise, recent studies suggest that sustained GSK-3beta inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3beta signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3beta on the inhibitory serine 9 residue; (2) the GSK-3beta inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3beta/p53 complexes. Moreover, the overexpression of an inactivated GSK-3beta mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3beta inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3beta and p53 on CD95 gene expression.  相似文献   

18.
Nitric oxide and promotion of cardiac myocyte apoptosis   总被引:1,自引:0,他引:1  
The removal of damaged, superfluous or energy-starved cells is essential for biological homeostasis, and occurs in every tissue type. Programmed cell death occurs through several closely regulated signal pathways, including apoptosis, in which cell components are broken down and packaged into small membrane-bound fragments that are then removed by neighbouring cells or phagocytes. This process is activated in the cardiac myocyte in response to a variety of stresses, including oxidative and nitrosative stress, and involves mitochondria-derived signals. Loss of cardiac myocytes through apoptosis has been shown to induce cardiomyopathy in a variety of gene-targeted animal models. Because cardiac myocytes have strictly limited ability to regenerate, sustained programmed cell death is likely to contribute to the development and progression of heart failure in a variety of myocardial diseases. At the same time, the cardiac myocyte possesses a number of mechanisms for defence against short-term haemodynamic and oxidative stresses. Our laboratory has recently examined the role of nitric oxide (NO) as a regulator of the programmed death of cardiac myocytes, and the potential contribution of NO and NO-dependent signalling to the loss of myocytes in heart failure. We will review the role of c-Jun N-terminal kinase in response to oxidative and nitrosative stress, and summarise evidence for its role as a cytoprotective mechanism. We will also review evidence implicating NO in the pathophysiology of heart failure, in the context of the extensive and sometimes contradictory body of research on NO and cell survival. (Mol Cell Biochem 263: 35–53, 2004)  相似文献   

19.
Nitric oxide (NO), reported as an important inducer of apoptosis, plays a considerable role in the pathogenetic mechanisms of articular diseases. This research aimed at investigating the role of p38 MAPK signal transduction pathway on apoptosis induced by NO in rabbit articular chondrocytes. In the present study, NO was produced by a novel NO donor NOC-18. Rabbit articular chondrocytes were cultured as monolayer, and the first passage cells were used for the experiments. We detected apoptosis induced by NO using Annexin V-FITC/PI flow cytometry and TUNEL assay. Measurement of caspase-3 has reflected its activity level. Western blotting was performed to show the protein expressions of p38, NF-kappaB, p53 and caspase-3. Furthermore, we examined the inhibitory effects in the NO pathway with p38-specific inhibitor SB203580. Treatment with NOC-18 caused accelerated apoptosis in a concentration dependent manner. This acceleration was able to be reduced when added to SB203580. Besides, the inhibitor could significantly decrease NO-induced p38, NF-kappaB, p53 and caspase-3 protein expressions, as well as caspase-3 intracellular activity (P<0.05). These results suggest that p38 MAPK signal transduction pathway is critical to NO-induced chondrocyte apoptosis, and p38 plays a role by way of stimulating NF-kappaB, p53 and caspase-3 activation.  相似文献   

20.
In this study, the effect of (Boc-Lys (Boc)-Arg-Asp-Ser (tBu)-OtBu), a tetrapeptide derivative (PEP1261) was examined for antiproliferative potency and apoptotic induction. Synovial fibroblasts were isolated from collagen-induced arthritic (CIA) rats and exposed to peptides viz., PEP1261, and parental peptides (KRDS and RGDS). Viability of the cells decreased in the presence of PEP1261 at a lower concentration (0.1 mM) when compared to RGDS and KRDS (1 mM). The treatment of cells with peptides showed induction of apoptosis, resulting in the cleavage of caspase-3 as well as its substrate poly-(ADP-ribose) polymerase (PARP). Pretreatment of cells with caspase-3 inhibitor prevented inhibition of [3H] thymidine incorporation, DNA fragmentation, and cleavage of caspase-3 and PARP as confirmed by western blotting as well as annexin-V/PI-staining using flow cytometry. However, caspase-1 and caspase-2 inhibitors did not prevent the peptides from inducing apoptosis indicating that caspase-3 might have a role in the process of apoptosis induced by peptides. Treatment of synovial fibroblasts with nitric oxide donor, S-nitroso-N-acetyl-dl-penicillamine (SNAP) (500 μM) showed significant elevation of nitric oxide levels and resulted in absence of apoptosis by preventing the inhibition of [3H] thymidine incorporation. This was further evidenced by annexin V/propidium iodide (PI) staining and absence of DNA fragmentation, intra cellular caspase-3 activity and PARP cleavage. In contrast, SNAP followed by PEP1261 and parental peptides-induced apoptosis by lowering the levels of nitric oxide. These results suggested that PEP1261 suppressed the proliferation and induced apoptosis in cultured synovial fibroblasts from CIA rats. This study also confirmed that PEP1261 inhibited nitric oxide level in cultured synovial fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号