首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca2+-ATPases and mammary calcium transport is unknown. We found that 24 h after stopping milk production, PMCA2 and secretory pathway Ca2+-ATPases 1 and 2 (SPCA1 and 2) expression decreased 80-95%. PMCA4 and Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 (SERCA2) expression increased with the loss of PMCA2, SPCA1, and SPCA2 but did not increase until 72-96 h of involution. The rapid loss of these Ca2+-ATPases occurs at a time of high mammary tissue calcium. These results suggest that the abrupt loss of Ca2+-ATPases, required by the mammary gland to regulate the large amount of calcium associated with milk production, could lead to accumulation of cell calcium, mitochondria Ca2+ overload, calcium mediated cell death and thus play a part in early signaling of mammary involution.  相似文献   

2.
Plasma membrane Ca2+-ATPase 2 (PMCA2) knockout mice showed that ∼60% of calcium in milk is transported across the mammary cells apical membrane by PMCA2. The remaining milk calcium is thought to arrive via the secretory pathway through the actions of secretory pathway Ca2+-ATPase’s 1 and/or 2 (SPCA1 and 2). However, another secretory pathway calcium transporter was recently described. The question becomes whether this Golgi Ca2+/H+ antiporter (TMEM165) is expressed sufficiently in the Golgi of lactating mammary tissue to be a relevant contributor to secretory pathway mammary calcium transport. TMEM165 shows marked expression on day one of lactation when compared to timepoints prepartum. At peak lactation TMEM165 expression was 25 times greater than that of early pregnancy. Forced cessation of lactation resulted in a rapid ∼50% decline in TMEM165 expression at 24 h of involution and TMEM165 expression declined 95% at 96 h involution. It is clear that the timing, magnitude of TMEM165 expression and its Golgi location supports a role for this Golgi Ca2+/H+ antiporter as a contributor to mammary Golgi calcium transport needs, in addition to the better-characterized roles of SPCA1&2.  相似文献   

3.
4.
The plasma membrane Ca2+ ATPase (PMCA) is an important regulator of free intracellular calcium, with dynamic regulation in the rat mammary gland during lactation. Recent studies suggest that Ca2+ plays a role in cellular proliferation. To determine if PMCA expression is altered in tumorigenesis, we compared relative levels of PMCA1 mRNA. We found that the relative expression of PMCA1 mRNA is increased, by approximately 270% and 170%, in MCF-7 and MDA-MB-231 human breast cancer cell lines deprived of serum for 72 h, respectively, compared to the similarly treated MCF-10A human mammary gland epithelial cell line. Characterization of PMCA mRNA isoforms revealed that PMCA1b and PMCA4 mRNA are expressed in MCF-7, MDA-MB-231, SK-BR-3, ZR-75-1 and BT-483 breast cancer cell lines. We also detected PMCA2 mRNA expression in all the breast cancer cell lines examined. However, PMCA3 mRNA was only detected in BT-483 cells. Our results suggest that PMCA expression may be altered in breast cancer cell lines, suggesting altered Ca2+ regulation in these cell lines. Our results also indicate that breast cancer cell lines can express mRNAs for a variety PMCA isoforms.  相似文献   

5.
The means by which calcium is transported into the milk produced by mammary glands is a poorly understood process. One hypothesis is that it occurs during exocytosis of secretory products via the Golgi pathway, consistent with the observation that the SPCA1 Ca2+-ATPase, which is expressed in the Golgi, is induced in lactating mammary tissue. However, massive up-regulation of the PMCA2bw plasma membrane Ca2+-ATPase also occurs during lactation and is more strongly correlated with increases in milk calcium, suggesting that calcium may be secreted directly via this pump. To examine the physiological role of PMCA2bw in lactation we compared lactating PMCA2-null mice to heterozygous and wild-type mice. Relative expression levels of individual milk proteins were unaffected by genotype. However, milk from PMCA2-null mice had 60% less calcium than milk from heterozygous and wild-type mice, the total milk protein concentration was lower, and an indirect measure of milk production (litter weights) suggested that the PMCA2-null mice produce significantly less milk. In contrast, lactose was higher in milk from PMCA2-null mice during early lactation, but by day 12 of lactation there were no differences in milk lactose between the three genotypes. These data demonstrate that the activity of PMCA2bw is required for secretion of much of the calcium in milk. This major secretory function represents a novel biological role for the plasma membrane Ca2+-ATPases, which are generally regarded as premier regulators of intracellular Ca2+.  相似文献   

6.
The secretion of calcium into milk by mammary epithelial cells is a fundamentally important process. Despite this, the mechanisms which underlie the movement of calcium across the lactating mammary gland are still poorly understood. There are, however, two models which describe the handling of calcium by mammary epithelial cells. On the one hand, a model which has existed for several decades, suggests that the vast majority of calcium enters milk via the Golgi secretory vesicle route. On the other hand, a new model has recently been proposed which implies that the active transport of calcium across the apical membrane of mammary secretory cells is central to milk calcium secretion. This short review examines the strengths and weaknesses of both models and suggests some experiments which could add to our understanding of mammary calcium transport.  相似文献   

7.
Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood) into the ductal lumen (milk). Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT) is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1), which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2) and basolateral (CaSR, ORAI-1) membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2). Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2) are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.  相似文献   

8.
Alternative splicing of the first intracellular loop differentially targets plasma membrane calcium ATPase (PMCA) isoform 2 to the apical or basolateral membrane in MDCK cells. To determine if the targeting is affected by lipid interactions, we stably expressed PMCA2w/b and PMCA2z/b in MDCK cells, and analyzed the PMCA distribution by confocal fluorescence microscopy and membrane fractionation. PMCA2w/b showed clear apical and lateral distribution, whereas PMCA2z/b was mainly localized to the basolateral membrane. A significant fraction of PMCA2w/b partitioned into low-density membranes associated with lipid rafts. Depletion of membrane cholesterol by methyl-β-cyclodextrin resulted in reduced lipid raft association and a striking loss of PMCA2w/b from the apical membrane, whereas the lateral localization of PMCA2z/b remained unchanged. Our data indicate that alternative splicing differentially affects the lipid interactions of PMCA2w/b and PMCA2z/b and that the apical localization of PMCA2w/b is lipid raft-dependent and sensitive to cholesterol depletion.  相似文献   

9.
Steady-state and transient kinetic studies were performed to functionally analyze the overall and partial reactions of the Ca(2+) transport cycle of the human secretory pathway Ca(2+)/Mn(2+)-ATPase 1 (SPCA1) isoforms: SPCA1a, SPCA1b, SPCA1c, and SPCA1d (encoded by ATP2C1, the gene defective in Hailey-Hailey disease) upon heterologous expression in mammalian cells. The expression levels of SPCA1 isoforms were 200-350-fold higher than in control cells except for SPCA1c, whose low expression level appears to be the effect of rapid degradation because of protein misfolding. Relative to SERCA1a, the active SPCA1a, SPCA1b, and SPCA1d enzymes displayed extremely high apparent affinities for cytosolic Ca(2+) in activation of the overall ATPase and phosphorylation activities. The maximal turnover rates of the ATPase activity for SPCA1 isoforms were 4.7-6.4-fold lower than that of SERCA1a (lowest for the shortest SPCA1a isoform). The kinetic analysis traced these differences to a decreased rate of the E(1) approximately P(Ca) to E(2)-P transition. The apparent affinity for inorganic phosphate was reduced in the SPCA1 enzymes. This could be accounted for by an enhanced rate of the E(2)-P hydrolysis, which showed constitutive activation, lacking the SERCA1a-specific dependence on pH and K(+).  相似文献   

10.
Gunaratne HJ  Vacquier VD 《FEBS letters》2006,580(16):3900-3904
Plasma membrane, sarco-endoplasmic reticulum and secretory pathway Ca2+-ATPases (designated PMCA, SERCA and SPCA) regulate intracellular Ca2+ in animal cells. The presence of PMCA, and the absence of SERCA, in sea urchin sperm is known. By using inhibitors of Ca2+-ATPases, we now show the presence of SPCA and Ca2+ store in sea urchin sperm, which refills by SPCA-type pumps. Immunofluorescence shows SPCA localizes to the mitochondrion. Ca2+ measurements reveal that approximately 75% of Ca2+ extrusion is by Ca2+ ATPases and 25% by Na+ dependent Ca2+ exchanger/s. Bisphenol, a Ca2+ ATPase inhibitor, completely blocks the acrosome reaction, indicating the importance of Ca2+-ATPases in fertilization.  相似文献   

11.
An unconventional interaction between SPCA2, an isoform of the Golgi secretory pathway Ca2+-ATPase, and the Ca2+ influx channel Orai1, has previously been shown to contribute to elevated Ca2+ influx in breast cancer derived cells. In order to investigate the physiological role of this interaction, we examined expression and localization of SPCA2 and Orai1 in mouse lactating mammary glands. We observed co-induction and co-immunoprecipitation of both proteins, and isoform-specific differences in the localization of SPCA1 and SPCA2. Three-dimensional cultures of normal mouse mammary epithelial cells were established using lactogenic hormones and basement membrane. The mammospheres displayed elevated Ca2+ influx by store independent mechanisms, consistent with upregulation of both SPCA2 and Orai1. Knockdown of either SPCA2 or Orai1 severely depleted Ca2+ influx and interfered with mammosphere differentiation. We show that SPCA2 is required for plasma membrane trafficking of Orai1 in mouse mammary epithelial cells and that this function can be replaced, at least in part, by a membrane-anchored C-terminal domain of SPCA2. These findings clearly show that SPCA2 and Orai1 function together to regulate Store-independent Ca2+ entry (SICE), which mediates the massive basolateral Ca2+ influx into mammary epithelia to support the large calcium transport requirements for milk secretion.  相似文献   

12.
The “w” splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amount of the pump in the apical membrane of these epithelial cells. We generated a stable MDCK cell line expressing non-tagged, full-length PMCA2w/b to further study the localization and function of this protein. Here we demonstrate that PMCA2w/b is highly active and shows enhanced apical localization in terminally polarized MDCK cells grown on semi-permeable filters. Reversible surface biotinylation combined with confocal microscopy of fully polarized cells show that the pump is stabilized in the apical membrane via the apical membrane cytoskeleton with the help of endogenous NHERF2 and ezrin. Disruption of the actin cytoskeleton removed the pump from the apical actin patches without provoking its internalization. Our data suggest that full polarization is a prerequisite for proper positioning of the PMCA2w variants in the apical membrane domain of polarized cells.  相似文献   

13.
The differentiation of colon cancer cell lines is associated with changes in calcium homeostasis. Concomitantly there are changes in the expression of some calcium transporters and G-protein-coupled receptors, which are capable of altering cytosolic-free calcium levels. Recent studies associate alterations in calcium transporter expression with tumourigenesis, such as changes in specific isoforms of the plasma membrane calcium ATPase (PMCA) in breast cancer cell lines. In this study, we examined the expression of PMCA isoforms in the HT-29 colon cancer cell line using two methods of differentiation (sodium butyrate-mediated and spontaneous post-confluency induced differentiation). Our studies show that differentiation of HT-29 colon cancer cells is associated with the up-regulation of the PMCA isoform PMCA4 but no significant alteration in PMCA1. These results suggest that PMCA4 may be important and have a specific role in colon cells as well as being significant in colon cancer tumourigenesis.  相似文献   

14.
The distribution of the secretory pathway Ca2+-ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney.SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

15.
The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell–cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7–PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.  相似文献   

16.
Lipid rafts are often considered as microdomains enriched in sphingomyelin and cholesterol, predominantly residing in the plasma membrane but which originate in earlier compartments of the cellular secretory pathway. Within this pathway, the membranes of the Golgi complex represent a transition stage between the cholesterol-poor membranes of the endoplasmic reticulum (ER) and the cholesterol-rich plasma membrane. The rafts are related to detergent-resistant membranes, which because of their ordered structure are poorly penetrated by cold non-ionic detergents and float in density gradient centrifugation. In this study the microdomain niche of the Golgi-resident SPCA Ca2+/Mn2+ pumps was investigated in HT29 cells by Triton X-100 detergent extraction and density-gradient centrifugation. Similarly to cholesterol and the raft-resident flotillin-2, SPCA1 was found mainly in detergent-resistant fractions, while SERCA3 was detergent-soluble. Furthermore, cholesterol depletion of cells resulted in redistribution of flotillin-2 and SPCA1 to the detergent-soluble fractions of the density gradient. Additionally, the time course of solubilization by Triton X-100 was investigated in live COS-1 and HT29 cells expressing fluorescent SERCA2b, SPCA1d or SPCA2. In both cell types, the ER-resident SERCA2b protein was gradually solubilized, while SPCA1d resisted to detergent solubilization. SPCA2 was more sensitive to detergent extraction than SPCA1d. To investigate the functional impact of cholesterol on SPCA1, ATPase activity was monitored. Depletion of cholesterol inhibited the activity of SPCA1d, while SERCA2b function was not altered. From these results we conclude that SPCA1 is associated with cholesterol-rich domains of HT29 cells and that the cholesterol-rich environment is essential for the functioning of the pump.  相似文献   

17.
18.
Calcium signaling is a key regulator of pathways important in tumor progression, such as proliferation and apoptosis. Most studies assessing altered calcium homeostasis in cancer cells have focused on alterations mediated through changes in cytoplasmic free calcium levels. Here, we show that basal-like breast cancers are characterized by an alteration in the secretory pathway calcium ATPase 1 (SPCA1), a calcium pump localized to the Golgi. Inhibition of SPCA1 in MDA-MB-231 cells produced pronounced changes in cell proliferation and morphology in three-dimensional culture, without alterations in sensitivity to endoplasmic reticulum stress induction or changes in global calcium signaling. Instead, the effects of SPCA1 inhibition in MDA-MB-231 cells reside in altered regulation of calcium-dependent enzymes located in the secretory pathway, such as proprotein convertases. Inhibition of SPCA1 produced a pronounced alteration in the processing of insulin-like growth factor receptor (IGF1R), with significantly reduced levels of functional IGF1Rβ and accumulation of the inactive trans-Golgi network pro-IGF1R form. These studies identify for the first time a calcium transporter associated with the basal-like breast cancer subtype. The pronounced effects of SPCA1 inhibition on the processing of IGF1R in MDA-MB-231 cells independent of alterations in global calcium signaling also demonstrate that some calcium transporters can regulate the processing of proteins important in tumor progression without major alterations in cytosolic calcium signaling. Inhibitors of SPCA1 may offer an alternative strategy to direct inhibitors of IGF1R and attenuate the processing of other proprotein convertase substrates important in basal breast cancers.  相似文献   

19.
1. Secretory pathway Ca2+ ATPase type 1 (SPCA1) is a newly recognized Ca2+/Mn2+-transporting pump localized in membranes of the Golgi apparatus.2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues.3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains.4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells.5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically.6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, α-tubulin or MBP.7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells.8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.  相似文献   

20.
Many studies of Ca2+ signaling use PC12 cells, yet the balance of Ca2+ clearance mechanisms in these cells is unknown. We used pharmacological inhibition of Ca2+ transporters to characterize Ca2+ clearance after depolarizations in both undifferentiated and nerve growth factor-differentiated PC12 cells. Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), plasma membrane Ca2+ ATPase (PMCA), and Na+/Ca2+ exchanger (NCX) account for almost all Ca2+ clearance in both cell states, with NCX and PMCA making the greatest contributions. Any contribution of mitochondrial uniporters is small. The ATP pool in differentiated cells was much more labile than that of undifferentiated cells in the presence of agents that dissipated mitochondrial proton gradients. Differentiated PC12 cells have a small component of Ca2+ clearance possessing pharmacological characteristics consistent with secretory pathway Ca2+ ATPase (SPCA), potentially residing on Golgi and/or secretory granules. Undifferentiated and differentiated cells are similar in overall Ca2+ transport and in the small transport due to SERCA, but they differ in the fraction of transport by PMCA and NCX. Transport in neurites of differentiated PC12 cells was qualitatively similar to that in the somata, except that the ER stores in neurites sometimes released Ca2+ instead of clearing it after depolarization. We formulated a mathematical model to simulate the observed Ca2+ clearance and to describe the differences between these undifferentiated and NGF-differentiated states quantitatively. The model required a value for the endogenous Ca2+ binding ratio of PC12 cell cytoplasm, which we measured to be 268 +/- 85. Our results indicate that Ca2+ transport in undifferentiated PC12 cells is quite unlike transport in adrenal chromaffin cells, for which they often are considered models. Transport in both cell states more closely resembles that of sympathetic neurons, for which differentiated PC12 cells often are considered models. Comparison with other cell types shows that different cells emphasize different Ca2+ transport mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号