首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

2.
Pigment epithelium-derived factor (PEDF) has been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, thus suggesting that loss of PEDF is involved in angiogenic eye diseases such as proliferative diabetic retinopathy. Angiogenesis is required for tumor growth and progression as well. We, along with others, have recently found that PEDF could inhibit growth of melanoma and hepatocellular carcinoma in nude mice through its anti-angiogenic effects on tumor endothelial cells. However, the possibility of the direct effect of PEDF on tumor cells has remained. In this study, we investigated the effects of PEDF on growth and vascular endothelial growth factor (VEGF) expression in MG63 human cultured osteosarcoma cells. PEDF decreased viable cell number as well as DNA synthesis in MG63 cells in a dose-dependent manner. Furthermore, PEDF was found to increase caspase-3/7 activity and to subsequently induce apoptotic cell death in MG63 cells. PEDF also inhibited VEGF expression in MG63 cells at both mRNA and protein levels. Our present study provides novel beneficial aspects of PEDF on osteosarcoma cells; one is induction of apoptotic cell death of tumor cells, and the other is the suppression of VEGF expression, which would lead to inhibition of tumor angiogenesis. PEDF therefore might be a promising therapeutic agent for treatment of patients with osteosarcoma.  相似文献   

3.
4.
Pigment epithelium-derived factor (PEDF) has been identified as one of the most potent of endogenous negative regulators of blood vessel growth in the body. Here we report that PEDF is able to inhibit growth factor-induced angiogenesis in microvascular endothelial cells through a novel pathway requiring cleavage and intracellular translocation of the transmembrane domain of the VEGFR-1. Analysis of the subcellular distribution of VEGFR-1 revealed the appearance of an 80-kDa C-terminal domain in the cytosol of cells treated with VEGF and PEDF that correlated with a decrease of the full-length receptor in the nuclear and cytoskeletal fractions. This regulated intramembrane proteolysis is dependent on gamma-secretase because inhibition of gamma-secretase abolished the inhibitory effect of PEDF on VEGF-induced angiogenesis as well as VEGFR-1 cleavage. The addition of PEDF to microvascular endothelial cells significantly increases gamma-secretase activity even in the absence of VEGF, showing that VEGF binding to VEGF-R1 is essential for substrate availability. This increase in activity was associated with translocation of presenilin 1 from the perinuclear region to the cell membrane. PEDF was also able to inhibit VEGF-induced phosphorylation of VEGFR-1. Taken together we have identified two novel pathways by which PEDF inhibits VEGF-induced angiogenesis: regulated intramembrane proteolysis and inhibition of phosphorylation. This confirms the importance of PEDF and VEGFR-1 in the negative regulation of angiogenesis.  相似文献   

5.
Y Chen  X Gou  X Ke  H Cui  Z Chen 《PloS one》2012,7(7):e40965
Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In this study, we made a three-dimensional (3D) tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs) in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM) of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I) secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.  相似文献   

6.
We examined how pigment epithelium derived factor (PEDF), an effective endogenous antiangiogenic protein, decreases survival of primary cultures of human umbilical vein endothelial cells (HUVECs) in a low serum environment supplemented with the endothelial cell growth factor (VEGF). We provide evidence that induction of apoptosis by PEDF is associated with activation of p38 followed by cleavage of caspases 3, 8, and 9 by treatment with PEDF, and PEDF's actions are caspase dependent. A key mediator in the executioner effects of PEDF is p38 since the inhibition of p38 activity blocked apoptosis and prevented cleavage of caspases 3, 8, and 9. Although PEDF-induced phosphorylation of JNK1, the inhibition of JNK1 had no effect on apoptosis, even though it prevented phosphorylation of JNK1 by PEDF. Based on these findings, we propose that the antiangiogenic action of PEDF is dependent on activation of p38 MAPkinase which regulates cleavage of multiple caspases cascades.  相似文献   

7.
8.
Shyu KG  Lin S  Lee CC  Chen E  Lin LC  Wang BW  Tsai SC 《Life sciences》2006,78(19):2234-2243
Evodiamine, the major bioactive compound isolated from Chinese herbal drug named Wu-Chu-Yu, has been reported to exhibit anti-tumor growth and metastasis. However, the effect of evodiamine on angiogenesis remains to be investigated. We used the fresh medium containing evodiamine or human lung adenocarcinoma cell (CL1 cells) derived conditioned media free of evodiamine to test their capability to induce in vitro angiogenesis, i.e., human umbilical vein endothelial cells (HUVECs) tube formation and invasion. We demonstrated that evodiamine could directly inhibit in vitro HUVECs tube formation and invasion. Locally administered evodiamine also inhibited the in vivo angiogenesis in the chick embryo chorioallantoic membrane (CAM) assay. The gene expression of vascular endothelial growth factor (VEGF) and the p44/p42 mitogen-activated protein kinase (MAPK, ERK) that correlated with endothelial cells angiogenesis were inhibited by evodiamine. We found that the evodiamine-treated CL1 cells derived conditioned medium showed decreased VEGF release and reduced ability of inducing in vitro tube formation. After the collection of conditioned media, the VEGF expression of remaining CL1 cells were determined by Western analyses and revealed that evodiamine decreased VEGF expression. Moreover, administration of recombinant human VEGF(165) (rhVEGF(165)) induced tube formation and ERK phosphorylation by HUVECs, and partially attenuated inhibitory effect of evodiamine. From these results, we suggested that evodiamine is a potent inhibitor of angiogenesis. The mechanism might involve at least the inhibition of VEGF expression, probably through repression of ERK phosphorylation.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is known as a key regulator of angiogenesis during endochondral bone formation. Recently, we demonstrated that TNF-related activation-induced cytokine (TRANCE or RANKL), which is essential for bone remodeling, also had an angiogenic activity. Here we report that VEGF up-regulates expression of receptor activator of NF-kappa B (RANK) and increases angiogenic responses of endothelial cells to TRANCE. Treatment of human umbilical vein endothelial cells (HUVECs) with VEGF increased both RANK mRNA and surface protein expression. Although placenta growth factor specific to VEGF receptor-1 had no significant effect on RANK expression, inhibition of downstream signaling molecules of the VEGF receptor-2 (Flk-1/KDR) such as Src, phospholipase C, protein kinase C, and phosphatidylinositol 3'-kinase suppressed VEGF-stimulated RANK expression in HUVECs. Moreover, the MEK inhibitor PD98059 or expression of dominant negative MEK1 inhibited induction of RANK by VEGF but not the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). VEGF potentiated TRANCE-induced ERK activation and tube formation via RANK up-regulation in HUVECs. Together, these results show that VEGF enhances RANK expression in endothelial cells through Flk-1/KDR-protein kinase C-ERK signaling pathway, suggesting that VEGF plays an important role in modulating the angiogenic action of TRANCE under physiological or pathological conditions.  相似文献   

10.
Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis, suggesting that loss of PEDF contributes to proliferative diabetic retinopathy. However, the role of PEDF against retinal vascular hyperpermeability remains to be elucidated. We investigated here whether and how PEDF could inhibit the advanced glycation end product (AGE) signaling to vascular hyperpermeability. Intravenous administration of AGEs to normal rats not only increased retinal vascular permeability by stimulating vascular endothelial growth factor (VEGF) expression but also decreased retinal PEDF levels. Simultaneous treatments with PEDF inhibited the AGE-elicited VEGF-mediated permeability by down-regulating mRNA levels of p22(phox) and gp91(phox), membrane components of NADPH oxidase, and subsequently decreasing retinal levels of an oxidative stress marker, 8-hydroxydeoxyguanosine. PEDF also inhibited the AGE-induced vascular hyperpermeability evaluated by transendothelial electrical resistance by suppressing VEGF expression. Furthermore, PEDF decreased reactive oxygen species (ROS) generation in AGE-exposed endothelial cells by suppressing NADPH oxidase activity via down-regulation of mRNA levels of p22(PHOX) and gp91(PHOX). This led to blockade of the AGE-elicited Ras activation and NF-kappaB-dependent VEGF gene induction in endothelial cells. These results indicate that the central mechanism for PEDF inhibition of the AGE signaling to vascular permeability is by suppression of NADPH oxidase-mediated ROS generation and subsequent VEGF expression. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.  相似文献   

11.
We previously demonstrated that differentiated retinal pigment epithelial (RPE) cells express high levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), and a critical balance between VEGF and PEDF is important to prevent the development of choroidal neovascularization. We report here that VEGF secreted by RPE cells upregulates PEDF expression via VEGFR-1 in an autocrine manner. PEDF mRNA and protein expression was downregulated by neutralizing antibody against VEGF in differentiated human RPE cells. VEGFR-1 neutralization decreased PEDF mRNA and protein expression whereas anti-VEGFR-2 antibody had no effect. Addition of placenta growth factor (PlGF) restored PEDF expression in the presence of anti-VEGF antibody. These results demonstrate a regulatory interaction between angiogenesis stimulators and inhibitors to maintain homeostasis in normal human retina.  相似文献   

12.
Gangliosides are sialic acid-containing glycosphingolipids that have long been associated with tumor malignancy and metastasis. Mounting evidence suggests that gangliosides also modulate tumor angiogenesis. Tumor cells shed gangliosides into the microenvironment, which produces both autocrine and paracrine effects on tumor cells and tumor-associated host cells. In this study, we show that the simple monosialoganglioside GM3 counteracts the proangiogenic effects of vascular endothelial growth factor (VEGF) and of the complex disialoganglioside GD1a. GM3 suppressed the action of VEGF and GD1a on the proliferation of human umbilical vein endothelial cells (HUVECs) and inhibited the migration of HUVECs toward VEGF as a chemoattractant. Enrichment of added GM3 in the HUVEC membrane also reduced the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) and downstream Akt. Moreover, GM3 reduced the proangiogenic effects of GD1a and growth factors in the in vivo Matrigel plug assay. Inhibition of GM3 biosynthesis with the glucosyl transferase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), increased HUVEC proliferation and the phosphorylation of VEGFR-2 and Akt. The effects of NB-DNJ on HUVECs were reversed with the addition of GM3. We conclude that GM3 has antiangiogenic action and may possess therapeutic potential for reducing tumor angiogenesis.  相似文献   

13.
A precise balance between stimulators and inhibitors of angiogenesis, such as vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), respectively, is essential for angiogenic homeostasis in ocular tissues. Retinal hypoxia is accompanied by some pathological conditions that may promote intraocular neovascularization. Here we demonstrate that retinal glial (Müller) cells express and release pigment epithelium-derived factor (PEDF). Decreasing oxygen concentrations cause strong attenuation of PEDF release resulting in enhanced VEGF/PEDF ratios. Exposure of Müller cells to VEGF suppressed PEDF release in a dose-dependent manner. This may represent a novel mechanism of ocular angiogenic homeostasis sufficient in the control of PEDF levels during normoxia or mild hypoxia but supplemented by other (hitherto unknown) mechanisms in cases of strong hypoxia. In spite of the enhanced VEGF/PEDF ratios resulting from hypoxia, conditioned media of Müller cells failed to stimulate additional proliferation of retinal endothelial cells. These findings suggest that in the ischemic retina, Müller cells generate a permissive condition for angiogenesis by secreting more VEGF and less PEDF, but the onset of retinal endothelial cell proliferation requires another triggering signal that remains to be identified.  相似文献   

14.
Vascular endothelial growth factor (VEGF) promotes the growth of solid tumor mainly via VEGF receptor-1 and receptor-2, which are expressed preferentially in proliferating endothelial cells. Therefore, a strategy for simultaneous blockage of both VEGF receptors may have a useful therapeutic effect in tumor growth. In this study, we utilized a fusion protein which is composed of receptor binding domain of VEGF-A (RBDV) and the constant region fragment (Fc) of a human immunoglobulin G1 (IgG1), to interfere with the growth of human umbilical vein endothelial cells (HUVECs) via VEGF receptors. The results showed that RBDV-IgG1 Fc was able to bind with both VEGF receptor-1 and receptor-2. In addition, RBDV-IgG1 Fc could decrease VEGF-induced proliferation and tube formation among HUVECs. Moreover, the cytotoxic test showed RBDV-IgG1 Fc could also enhance the cytotoxic activity of human natural killing cells. The data are suggesting that the fusion protein, RBDV-IgG1 Fc, may have potential as an angiogenesis antagonist for future tumor therapy.  相似文献   

15.
The anti-angiogenic activity of pigment epithelium-derived factor (PEDF) has recently been discovered on the basis of its inhibition of ischemia-induced retinal neovascularization in an animal model of retinopathy of the premature. Moreover PEDF inhibits the migration and proliferation of various endothelial cells maintained in culture with FGF(2). Since vascular endothelial growth factor (VEGF) is the main angiogenic factor expressed in hypervascularized retinas, we investigated the functions of PEDF on retinal endothelial cells whose angiogenic phenotype is controlled or not by long term exposure to VEGF as observed in human pathologies such as diabetic retinopathy. Here, we observed that PEDF exerts opposite effects on endothelial cells depending on their phenotype. We determined that when PEDF inhibits endothelial cell growth, it inhibits VEGF-induced MAPK activation. However, in endothelial cells cultured with VEGF, PEDF has a synergistic action on cell proliferation with VEGF, and this corresponds to increased MAPK activation.  相似文献   

16.
Arsenic trioxide (ATO) has been used to treat patients with acute promyelocytic leukemia. Recently, studies have shown that ATO can induce apoptosis in leukemic cells and blood vessel endothelial cells in a time- and dose-dependent manner through the inhibition of vascular endothelial growth factor A (VEGFA) production. VEGFA is a key factor in angiogenesis initiation. Targeted inhibition of VEGF or VEGFA expression can suppress angiogenesis; however, little is known about the mechanism by which ATO inhibits VEGFA expression. In this study, we investigated the role of miRNA-126 in the mechanism of action of ATO in human umbilical vein endothelial cells (HUVECs). ATO significantly decreased the viability and proliferation of HUVECs and decreased their migration at 48 h. Cell proliferation was inhibited by 50% (IC50) when 5.0 μmol/L ATO was used. ATO treatment induced miR-126 upregulation and HUVEC apoptosis. Transfection with a miR-126 mimic significantly downregulated VEGFA mRNA levels, and transfection with a miR-126 inhibitor significantly upregulated VEGFA mRNA levels. Finally, we showed that ATO treatment upregulated Ets-2 and miR-126 expression in HUVECs. These results demonstrate that ATO inhibits the growth of HUVECs and induces apoptosis by downregulating VEGFA. One mechanism by which this occurs is Ets-2 upregulation, which results in an increase in miR-126 levels and downregulation of VEGFA expression.  相似文献   

17.
Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.  相似文献   

18.
Gao G  Li Y  Zhang D  Gee S  Crosson C  Ma J 《FEBS letters》2001,489(2-3):270-276
Retinal levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF), an angiogenic inhibitor, were measured and correlated with the ischemia-induced retinal neovascularization in rats. The retinas with neovascularization showed a 5-fold increase in VEGF while 2-fold decrease in PEDF, compared to the age-matched controls, resulting in an increased VEGF/PEDF ratio. The time course of the VEGF/PEDF ratio change correlated with the progression of retinal neovascularization. Changes in the VEGF and PEDF mRNAs preceded their protein level changes. These results suggest that an unbalance between angiogenic stimulators and inhibitors may contribute to retinal neovascularization.  相似文献   

19.
Angiogenesis plays a pivotal role in the aggressive proliferation of synovial cells in rheumatoid arthritis. We have previously reported the overexpression of inhibitor of DNA binding/differentiation (Id) in the endothelial cells within the synovial tissues of rheumatoid arthritis. In this study, we investigated the role of Id in inflammation and angiogenesis in an in vitro model using HUVECs. Vascular endothelial growth factor (VEGF) and TGFbeta induced the expression of Id1 and Id3 in HUVECs. Forced expression of Id induced proliferative activity in HUVECs accompanied by down-regulation of p16INK4a. Overexpression of Id enhanced expression of ICAM-1 and E-selectin, and induced angiogenic processes such as transmigration, matrix metalloproteinase-2 and -9 expression, and tube formation. In contrast, knockdown of Id1 and Id3 with RNA interference abolished proliferation, activation, and angiogenic processes of HUVECs induced by VEGF. These results indicated that Id plays a crucial role in VEGF-induced signals of endothelial cells by causing activation and potentiation of angiogenic processes. Based on these findings, it was proposed that inhibition of expression and/or function of Id1 and Id3 may potentially be of therapeutic value for conditions associated with pathological angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号