首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.

Background

ABCA3 transporter (ATP-binding cassette transporter of the A subfamily) is localized to the limiting membrane of lamellar bodies, organelles for assembly and storage of pulmonary surfactant in alveolar epithelial type II cells (AECII). It transports surfactant phospholipids into lamellar bodies and absence of ABCA3 function disrupts lamellar body biogenesis. Mutations of the ABCA3 gene lead to fatal neonatal surfactant deficiency and chronic interstitial lung disease (ILD) of children. ABCA3 mutations can result in either functional defects of the correctly localized ABCA3 or trafficking/folding defects where mutated ABCA3 remains in the endoplasmic reticulum (ER).

Methods

Human alveolar epithelial A549 cells were transfected with vectors expressing wild-type ABCA3 or one of the three ABCA3 mutant forms, R43L, R280C and L101P, C-terminally tagged with YFP or hemagglutinin-tag. Localization/trafficking properties were analyzed by immunofluorescence and ABCA3 deglycosylation. Uptake of fluorescent NBD-labeled lipids into lamellar bodies was used as a functional assay. ER stress and apoptotic signaling were examined through RT-PCR based analyses of XBP1 splicing, immunoblotting or FACS analyses of stress/apoptosis proteins, Annexin V surface staining and determination of the intracellular glutathion level.

Results

We demonstrate that two ABCA3 mutations, which affect ABCA3 protein trafficking/folding and lead to partial (R280C) or complete (L101P) retention of ABCA3 in the ER compartment, can elevate ER stress and susceptibility to it and induce apoptotic markers in the cultured lung epithelial A549 cells. R43L mutation, resulting in a functional defect of the properly localized ABCA3, had no effect on intracellular stress and apoptotic signaling.

Conclusion

Our data suggest that expression of partially or completely ER localized ABCA3 mutant proteins can increase the apoptotic cell death of the affected cells, which are factors that might contribute to the pathogenesis of genetic ILD.  相似文献   

2.
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage is amplified in iPLA(2)beta overexpressing INS-1 cells (OE), relative to empty vector-transfected cells, and is suppressed by iPLA(2)beta inhibition. ER stress also led to the release of cytochrome c and Smac and, unexpectedly, their accumulation in the cytosol is amplified in OE cells. These findings raise the likelihood that iPLA(2)beta participates in ER stress-induced apoptosis by activating the intrinsic apoptotic pathway. Consistent with this possibility, we find that ER stress promotes iPLA(2)beta accumulation in the mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial membrane potential (Delta Psi) in INS-1 cells and that these changes are amplified in OE cells. ER stress also led to greater ceramide generation in ER and mitochondria fractions of OE cells. Exposure to ceramide alone induces loss in Delta Psi and apoptosis and these are suppressed by forskolin. ER stress-induced mitochondrial dysfunction and apoptosis are also inhibited by forskolin, as well as by inactivation of iPLA(2)beta or NSMase, suggesting that iPLA(2)beta-mediated generation of ceramides via sphingomyelin hydrolysis during ER stress affect the mitochondria. In support, inhibition of iPLA(2)beta or NSMase prevents cytochrome c release. Collectively, our findings indicate that the iPLA(2)beta-ceramide axis plays a critical role in activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress.  相似文献   

3.
Endoplasmic reticulum (ER) stress-induced apoptosis may arise from multiple environmental and pharmacological causes, but the precise mechanism(s) involved are not completely known. Members of Bcl-2 protein family are important regulators of apoptosis. In this study, we report that in a process dependent on the proapoptotic Bcl-2 members Bax and Bak, exogenously expressed fluorescent protein localized to the ER lumen is released into the cytosol in cells undergoing ER stress. Upon ER stress induction, endogenous ER luminal proteins are also released into the cytosol in a similar manner accompanied by translocation and anchorage of Bax to the ER membrane. In addition, Bax and truncated-Bid (tBid) mediate a global increase in ER membrane permeability to ER luminal proteins in vitro. Importantly, antiapoptotic Bcl-XL antagonizes the effects of proapoptotic Bcl-2 proteins on ER membrane permeability. Consistent with Bax translocation to the ER membrane in whole apoptotic cells, there is also increased tight association of Bax with the ER membrane correlated with the increase in ER membrane permeability in vitro. Overall, these data suggest that the regulation of ER membrane permeability by Bcl-2 proteins could be an important molecular mechanism of ER stress-induced apoptosis.  相似文献   

4.
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.  相似文献   

5.
《Cellular signalling》2014,26(2):287-294
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.  相似文献   

6.
The neural dysfunction in Alzheimer's disease (AD) could arise from endoplasmic reticulum (ER) stress and deficits of the unfolded protein response (UPR). To explore whether tau hyperphosphorylation, a hallmark of AD brain pathologies, plays a role in ER stress-induced alterations of cell viability, we established cell lines with stable expression of human tau (HEK293/tau) or the vector (HEK293/vec) and treated the cells with thapsigargin (TG), an ER stress inducer. We observed that the HEK293/tau cells were more resistant than the HEK293/vec cells to the TG-induced apoptosis, importantly, a time dependent increase of tau phosphorylation at Thr205 and Thr231 sites was positively correlated with the inhibition of apoptosis. We also observed that expression of tau upregulated phosphorylation of PERK, eIF2 and IRE1 with an increased cleavage of ATF6 and ATF4. The potentiation of UPR was also detected in HEK293/tau cells treated with other ER stress inducers, including staurosporine, camptothecin and hydrogen peroxide, in which a suppressed apoptosis was also shown. Our data suggest that tau hyperphosphorylation could attenuate the ER stress-induced apoptosis with the mechanism involving upregulation of UPR system.  相似文献   

7.
The chaperone glucose-regulated protein, 78/immunoglobulin binding protein (GRP78/Bip), protects cells from cytotoxicity induced by DNA damage or endoplasmic reticulum (ER) stress. In this study, we showed that GRP78 is a major inducible protein in human non-small cell lung cancer H460 cells treated with ER stress inducers, including A23187 and thapsigargin. AEBSF, an inhibitor of serine protease, diminished GRP78 induction, enhanced mitochondrial permeability, and augmented apoptosis in H460 cells during ER stress. Simultaneously, AEBSF promoted Raf-1 degradation and suppressed phosphorylation of Raf-1 at Ser338 and/or Tyr340 during ER stress. Coimmunoprecipitation assays and subcellular fractionations showed that GRP78 associated and colocalized with Raf-1 on the outer membrane of mitochondria, respectively. While treatment of cells with ER stress inducers inactivated BAD by phosphorylation at Ser75, a Raf-1 phosphorylation site; AEBSF attenuated phosphorylation of BAD, leading to cytochrome c release from mitochondria. Additionally, overexpression of GRP78 and/or Raf-1 protected cells from ER stress-induced apoptosis. Taken together, our results indicate that GRP78 may stabilize Raf-1 to maintain mitochondrial permeability and thus protect cells from ER stress-induced apoptosis.  相似文献   

8.

In the present study we have shown that treatment of SH-SY5Y cells with either thapsigargin or tunicamycin is associated with a significant decrease in ROUTINE and ATP-coupled mitochondrial respiration as well as a decrease in spare and maximal respiratory capacity. We have also shown that treating cells with either thapsigargin or tunicamycin is associated with significant changes in mitochondrial membrane potential (ΔΨm) generation, which is mainly associated with the reversal of the succinyl-CoA ligase reaction and a decreased activity of complex II. Despite the induction of endoplasmic reticulum (ER) specific unfolded protein response (UPR), as documented by increased expression of HRD1, ER stress did not induce mitochondrial UPR since the expression of both mitochondrial protease LONP1 and mitochondrial chaperone HSP60 was not significantly altered. Inhibition of IRE1α ribonuclease with STF-083010 did not protect the SH-SY5Y cells from ER stress-induced mitochondrial dysfunction. STF-083010 itself had significant impact on both mitochondrial respiration and generation of ΔΨm, which has mainly been associated with the uncoupling of respiratory chain from ATP synthesis.

  相似文献   

9.
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a major role in the development of many diseases. A previous study indicated that the apoptotic regulator p53 is significantly increased in response to ER stress and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. Here, we investigated whether p53 contributes to the impairment of Pin1 signaling under ER stress. We found that treatment with thapsigargin, a stimulator of p53 expression and an inducer of ER stress, decreased Pin1 expression in HCT116 cells. Also, we identified functional p53 response elements (p53REs) in the Pin1 promoter. Overexpression of p53 significantly decreased Pin1 expression in HCT116 cells while abolition of p53 gene expression induced Pin1 expression. Pin1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α or down-regulation of p53 expression. Taken together, ER stress decreased Pin1 expression through p53 activation, and this mechanism may be associated with ER stress-induced cell death. These data reported here support the importance of Pin1 as a potential target molecule mediating tumor development.  相似文献   

10.
The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58(IPK) expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58(IPK) induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response.  相似文献   

11.
12.
Cells mitigate ER stress through the unfolded protein response (UPR). Here, we report formation of ER whorls as an effector mechanism of the ER stress response. We found that strong ER stress induces formation of ER whorls, which contain ER-resident proteins such as the Sec61 complex and PKR-like ER kinase (PERK). ER whorl formation is dependent on PERK kinase activity and is mediated by COPII machinery, which facilitates ER membrane budding to form tubular-vesicular ER whorl precursors. ER whorl precursors then go through Sec22b-mediated fusion to form ER whorls. We further show that ER whorls contribute to ER stress-induced translational inhibition by possibly modulating PERK activity and by sequestering translocons in a ribosome-free environment. We propose that formation of ER whorls reflects a new type of ER stress response that controls inhibition of protein translation.Subject terms: Endoplasmic reticulum, Collective cell migration  相似文献   

13.
Stresses that impair the function of the endoplasmic reticulum (ER) lead to an accumulation of unfolded protein in the ER. Under these conditions, the expression of a variety of genes involved in preventing the accumulation of the unfolded proteins is induced. Yeast Hrd1p is an ER stress-inducible ER membrane protein that acts as a ubiquitin ligase (E3) with a RING finger motif and plays a role in the ubiquitination of proteins in the ER. We report here the identification and characterization of a human homolog to yeast Hrd1p. The predicted structures are highly conserved from yeast to humans. Indeed, human HRD1 was localized to the ER and ubiquitinated its substrates. Furthermore, it was found that human HRD1 was up-regulated by ER stress via IRE1 and ATF6, which are ER stress transducers. Interestingly, 293 cells stably expressing wild-type HRD1, but not the C329S mutant, afforded resistance to ER stress-induced apoptosis. These results suggest that the production of HRD1 is up-regulated to protect against ER stress-induced apoptosis by degrading unfolded proteins accumulated in the ER.  相似文献   

14.
The endoplasmic reticulum (ER) plays essential roles indispensable for cellular activity and survival, including functions such as protein synthesis, secretory and membrane protein folding, and Ca2+ release in cells. The ER is sensitive to stresses that can lead to the aggregation and accumulation of misfolded proteins, which eventually triggers cellular dysfunction; severe or prolonged ER stress eventually induces apoptosis. ER stress-induced apoptosis causes several devastating diseases such as atherosclerosis, neurodegenerative diseases, and diabetes. In addition, the production of biopharmaceuticals such as monoclonal antibodies requires the maintenance of normal ER functions to achieve and maintain the production of high-quality products in good quantities. Therefore, it is necessary to develop methods to efficiently relieve ER stress and protect cells from ER stress-induced apoptosis. The silkworm storage protein 1 (SP1) has anti-apoptotic activities that inhibit the intrinsic mitochondrial apoptotic pathway. However, the role of SP1 in controlling ER stress and ER stress-induced apoptosis has not been investigated. In this paper, we demonstrate that SP1 can inhibit apoptosis induced by a well-known ER stress inducer, thapsigargin, by alleviating the decrease in cell viability and mitochondrial membrane potential. Interestingly, SP1 significantly blocked increases in CHOP and GRP78 expression as well as ER Ca2+ leakage into the cytosol following ER stress induction. This indicates that SP1 protects cells from ER stressinduced apoptosis by functioning as an upstream inhibitor of apoptosis. Therefore, studying SP1 function can offer new insights into protecting cells against ER stress-induced apoptosis for future applications in the biopharmaceutical and medicine industries.  相似文献   

15.
16.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

17.

Endoplasmic reticulum (ER) stress responses have been demonstrated to play important roles in maintaining various cellular functions and to underlie many tissue dysfunctions. In this study, we identified Sec16B as an ER stress-inducible gene by microarray analysis of brefeldin A (BFA)-inducible genes in a mouse neuroblastoma cell-line, Neuro2a. Sec16B mRNA was induced by treatment with the ER stress-inducing reagents thapsigargin (Tg) and brefeldin A in a time-dependent manner. In the genomic sequence of the mouse Sec16B gene, we found an unfolded protein response element (UPRE), which is well conserved between humans and mice. Using luciferase reporter analyses, we showed that the UPRE in the mouse Sec16B gene was functional and responded well to ER stress-inducing stimuli and spliced XBP1 (sXBP1)-overexpression. In addition, a unique ATF4-responsive sequence within the first intron of the mouse Sec16B gene was characterized. Our study may help to elucidate the regulation of trafficking through the ER–Golgi apparatus and the biogenesis of ER-derived intracellular organelles.

  相似文献   

18.
19.
20.
APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser(430) and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser(430) is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser(430) in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser(430) as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser(430) in insulin signaling, overexpression of APPL1(S430D) but not APPL1(S430A) impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr(308). Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser(430).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号