首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.  相似文献   

2.
3.
4.
5.
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.  相似文献   

6.
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.  相似文献   

7.
8.
The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) protein is a nuclear-localized component of the ethylene signal-transduction pathway with DNA-binding activity. Loss-of-function mutations in this protein result in ethylene insensitivity in Arabidopsis. To gain a better understanding of the ethylene signal-transduction pathway in tomato, we have identified three homologs of the Arabidopsis EIN3 gene (LeEILs). Each of these genes complemented the ein3-1 mutation in transgenic Arabidopsis, indicating that all are involved in ethylene signal transduction. Transgenic tomato plants with reduced expression of a single LeEIL gene did not exhibit significant changes in ethylene response; reduced expression of multiple tomato LeEIL genes was necessary to reduce ethylene sensitivity significantly. Reduced LeEIL expression affected all ethylene responses examined, including leaf epinasty, flower abscission, flower senescence and fruit ripening. Our results indicate that the LeEILs are functionally redundant and positive regulators of multiple ethylene responses throughout plant development.  相似文献   

9.
The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia x hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction.  相似文献   

10.
D. Orzáez  R. Blay  A. Granell 《Planta》1999,208(2):220-226
The role of ethylene in the control of senescence of both petals and unpollinated carpels of pea was investigated. An increase in ethylene production accompanied senescence, and the inhibitors of ethylene action were effective in delaying senescence symptoms in different flower verticils. Pollination did not seem to trigger the senescence syndrome in the corolla as deduced from the observation that petals from pollinated and unpollinated flowers and from flowers whose carpels had been removed senesced at the same time. A cDNA clone encoding a putative ethylene-response sensor (psERS) was isolated from pea flowers, and the pattern of expression of its mRNA was studied during development and senescence of different flower tissues. The levels of psERS mRNA paralleled ethylene production (and also levels of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) mRNA) in both petals and styles. Silver thiosulfate treatments were efficient at preventing ACO and psERS mRNA induction in petals. However, the same inhibitor showed no ability to modify expression patterns in pea carpels around the anthesis stage, suggesting different controls for ethylene synthesis and sensitivity in different flower organs. Received: 18 June 1998 / Accepted: 22 December 1998  相似文献   

11.
Pollination of many flowers leads to an increase in ethylene synthesis and flower senescence. We have investigated the regulation of pollination-induced ethylene synthesis in tomato (Lycopersicon esculentum) using flowers of the dialytic (dl) mutant, in which pollination can be manipulated experimentally, with the aim of developing a model system to study tomato flower senescence. Ethylene synthesis increased rapidly in dl pistils following pollination, leading to accelerated petal senescence, and was delayed in ethylene-insensitive Never-ripe (Nr) pistils. However, Nr pistils eventually produced more ethylene than dl pistils, suggesting the presence of negative feedback regulation of ethylene synthesis following pollination. LEACS1A expression correlated well with increased ethylene production in pollinated dl pistils, and expression in Nr revealed that regulation is via an ethylene-independent mechanism. In contrast, the induction of the 1-aminocyclopropane-1-carboxylic acid oxidases, LEACO1 and LEACO3, following pollination is ethylene dependent. In addition, the expression profiles of ACS and ACO genes were determined during petal senescence and a hypothesis proposed that translocated 1-aminocyclopropane-1-carboxylic acid from the pistil may be important for regulating the initial burst of ethylene production during petal senescence. These results are discussed and differences between tomato and the ornamental species previously studied are highlighted.  相似文献   

12.
13.
Control of ethylene-mediated processes in tomato at the level of receptors   总被引:18,自引:0,他引:18  
The plant hormone ethylene controls many aspects of development and response to the environment. In tomato, ethylene is an essential component of flower senescence, organ abscission, adventitious root initiation, and fruit ripening. Responses to ethylene are also critical for aspects of biotic and abiotic stress responses. Clearly, much of the control of these events occurs at the level of hormone synthesis. However, it is becoming apparent that levels of the ethylene receptors are also highly regulated. The tomato ethylene receptors are encoded by a family of six genes. Levels of expression of these genes are spatially and temporally controlled throughout development. Further, a subset of the receptor genes respond to external stimuli. Genetic and biochemical evidence supports a model in which the ethylene receptors act as negative regulators of downstream responses; in the absence of ethylene, receptors actively suppress expression of ethylene responsive genes. Consistent with this model, a reduction in the overall level of receptor increases ethylene responsiveness of a tissue while higher expression of receptor decreases ethylene sensitivity. Evidence to support this model will be presented.  相似文献   

14.
The expression of two CTR-gene homologues was investigated during flower senescence in two Rosa hybrida cultivars. A fragment of a gene for a protein kinase, termed RhCTR1 (GenBank Acc. No. AF271206), was amplified by PCR and used to isolate the corresponding full-length cDNA (Acc. No. AY032953) from a rose petal cDNA library. The protein RhCTR1 has 66% amino acid identity to Arabidopsis CTR1. A fragment of a second CTR homologue, termed RhCTR2 (Acc. No. AY029067) is 69% identical to the corresponding region of RhCTR1. RhCTR1 expression increased during flower senescence, while RhCTR2 was constitutively expressed during flower development. The expression of both RhCTR1 and RhCTR2 was increased in response to exogenous ethylene.  相似文献   

15.
The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1 promoter. In about half of the transgenic plants obtained flower senescence was delayed by at least 6 days relative to control flowers, with a maximum delay of 16 days, a 3-fold increase in vase life. These flowers did not show the petal inrolling phenotype typical of ethylene-dependent carnation flower senescence. Instead, petals remained firm and finally started to rot and decolorize.In transgenic plants with delayed flower senescence, expression of the Arabidopsis etr1-1 gene was detectable and the expression pattern followed the activity of the upstream promoter. In these flowers expression of the ACO1 gene, encoding the final enzyme in the ethylene biosynthesis pathway, ACC oxidase, was down-regulated. This indicates that the autocatalytic induction of ethylene biosynthesis, required to initiate and regulate the flower senescence process, is absent in etr1-1 transgenic plants due to dominant ethylene insensitivity.The delay in senescence observed in transgenic etr1-1 flowers was longer than in flowers pretreated with chemicals that inhibit either ethylene biosynthesis (amino-oxyacetic acid) or the ethylene response (silver thiosulfate). This may have important implications for post-harvest management of carnation flowers.  相似文献   

16.
17.
Liu Q  Wen CK 《Plant physiology》2012,158(3):1193-1207
The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1((C65Y))(for ethylene response1-1), ers1-1((I62P)) (for ethylene response sensor1-1), and ers1(C65Y) are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1((C65Y)), but not ers1-1((I62P)), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1((I62P)); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1((I62P)) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1(C65Y), which implied that ETR1 and EIN4 have synergistic effects on ers1(C65Y) functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors.  相似文献   

18.
乙烯受体是乙烯信号转导网络的第一个转导元件,通过调控受体基因的表达,可以调节植物对乙烯的敏感性,以调控果实的成熟及花衰老进程的响应.随着人们对乙烯受体研究的深入,乙烯受体突变体及受体抑制剂在采后果实和切花保鲜上的应用已受到广泛关注.就近年来关于乙烯受体的相关研究进展进行综述,重点介绍了乙烯受体的分子调控机制及乙烯受体在...  相似文献   

19.
乙烯在切花衰老中的作用(综述)   总被引:7,自引:0,他引:7  
切花衰老是基因表达激活和蛋白质合成受到高度调控的过程。切花衰老所伴随的生理生化变化包括水解酶活性上升、大分子物质降解、呼吸作用增强和类似呼吸跃变的乙烯合成剧增等。乙烯的生成及其作用是切花衰老研究中十分重要的内容。本文综述乙烯在切花衰老过程中调控作用的研究现状。  相似文献   

20.
The senescence of flower petals is a highly regulated developmental process which requires active gene expression and protein synthesis. The biochemical changes associated with petal senescence in carnation flowers include an increase in hydrolytic enzymes, degradation of macro-molecules, increased respiratory activity and a climacteric-like increase in ethylene production. It is clear that the gaseous phytohormone ethylene plays a critical role in the regulation and coordination of senescence processes. Many reviews on physiology and mode of action of ethylene are available. Molecular cloning led to the isolation of genes involved in ethylene biosynthesis and action. This review describes the current status of the studies on regulation of ethylene biosynthesis and ethylene response in carnation flowers. An overview is given of studies on senescence-related gene expression and possibilities to improve postharvest longevity by genetic engineering.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AIB -amino-isobutyric acid - AOA amino oxyacetic acid - AVG aminoathoxyvinyl glycine - DACP diazocyclopentadiene - EFE ethylene forming enzyme - MACC malonyl 1-aminocyclopropane-1-carboxylic acid - MTA 5-methylthio-adenosine - NBD 2,5 norbornadiene - ppb parts per billion - SAM S-adenosyl-methionine - STS silver thiosulphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号