首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulators play important roles in controlling gene activity and maintaining regulatory independence between neighbouring genes. In this article, we show that the enhancer-blocking activity of the insulator present within the LTR retrotransposon Idefix can be abolished if two copies of the region containing the insulator—specifically, the long terminal repeat (LTR)—are fused to the retrotransposon's 5′ untranslated region (5′ UTR). The presence of this combination of two [LTR-5′ UTR] modules is a prerequisite for the loss of enhancer-blocking activity. We further show that the 5′ UTR causes flanking genomic sequences to be displaced to the nuclear periphery, which is not observed when two insulators are present by themselves. This study thus provides a functional link between insulators and independent genomic modules, which may cooperate to allow the specific regulation of defined genomic loci via nuclear repositioning. It further illustrates the complexity of genomic regulation within a chromatic environment with multiple functional elements.  相似文献   

2.
Members of the Frizzled (Fz) family of seven-pass transmembrane receptors are required for the transduction of both Wnt-Fz/beta-catenin and Fz/planar cell polarity (PCP) signals. Although both pathways transduce signals via interactions between Fz and the cytoplasmic protein Dishevelled (Dsh), each pathway has specific and distinct effectors. One explanation for the pathway specificity is that signal-induced conformational changes result in unique Fz-Dsh interactions. Our mutational analyses of Fz-Dsh activities in vivo do however not support this model, since both pathways are affected by all mutations tested. Alternatively, the interaction of Fz or Dsh with other proteins could modulate the signaling outcome. We examined the role of a Dsh-binding PCP molecule, Diego (Dgo), in both Wnt-Fz/beta-catenin and Fz/PCP signaling. Both loss-of-function and gain-of-function results suggest that Dgo promotes Fz-Dsh/PCP signaling at the expense of Wnt-Fz/beta-catenin signaling. Our data suggest that Dgo sequesters Dsh to a functionally distinct Fz/PCP signaling compartment within the cell.  相似文献   

3.
Many proteins that have been implicated in cell-matrix adhesion and cell migration are phosphorylated, which regulates their folding, enzymatic activities and protein-protein interactions. Although modulation of cell motility by kinases is well known, increasing evidence confirms that phosphatases are essential at each stage of the migration process. Phosphatases can control the formation and maintenance of the actin cytoskeleton, regulate small GTPase molecular switches, and modulate the dynamics of matrix-adhesion interaction, actin contraction, rear release and migratory directionality.  相似文献   

4.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

5.
A range of N-acetyllactosamine derivatives, which are modified by a wide range of functionalities at C-2(') and C-6, have been synthesised and the kinetic parameters of transfer catalysed by recombinant alpha-2,6-sialyltransferase and alpha-1,3-fucoyltransferase VI determined. Several of the chemical modifications led to selective modulate the activity the enzymes and offer promising lead compounds for the development of oligosaccharide primers for selective metabolic inhibition of oligosaccharide biosynthesis.  相似文献   

6.
Galan MC  Venot AP  Boons GJ 《Biochemistry》2003,42(28):8522-8529
A range of N-acetyllactosamine derivatives (compounds 4-7) that have restricted mobilities around their glycosidic linkages have been employed to determine how small changes in conformational properties of an oligosaccharide acceptor affect catalytic efficiencies of glycosylations by alpha-2,6- and alpha-2,3-sialyltransferases and alpha-1,3-fucosyltransferases IV and VI. Restriction of conformational mobility was achieved by introducing tethers of different length and chemical composition between the C-6 and C-2' hydroxyl of LacNAc. Compound 4 is a 2',6-anhydro derivative which is highly constrained and can adopt only two unusual conformations at the LacNAc glycosidic linkage. Compound 5 is modified by a methylene acetal tether and can exist in a larger range of conformations; however, the Phi dihedral angle is restricted to values smaller than 30 degrees, which are not entirely similar to minimum energy conformations of LacNAc. The ethylene-tethered 6 can attain conformations in the relatively large energy plateau of LacNAc that include syn conformations A and B, whereas compound 7, which is modified by a methylamide tether, can only reside in the B-conformer. 2',6-Dimethoxy derivative 2 was employed to determine the effect of alkylation of the C-6 and C-2' hydroxyls of 5 and 6 whereas 3 was used to reveal the effects of the C-6 amide and C-2' alkylation of 7. The apparent kinetic parameters of transfer to the conformationally constrained 4-7 and reference compounds 1-3 catalyzed by alpha-2,6- and alpha-2,3-sialyltransferases and alpha-1,3-fucosyltransferases IV and VI were determined, and the results correlated with their conformational properties. The data for 4-6 showed that each enzyme recognizes N-acetyllactosamine in a low minimum energy conformation. A small change in conformational properties such as in compound 5 resulted in a significant loss of catalytic activity. Larger conformational changes such as in compound 4 abolished all activity of the sialyltransferases whereas the fucosyltransferases showed some activity, albeit very low. The kinetic data for compounds 4 and 5 demonstrate clearly that different glycosyltransferases respond differently to conformational changes, and the fucosyltransferases lost less activity than the sialyltransferases. Correlating apparent kinetic parameters of conformationally constrained 6 and 7 and their reference compounds 2 and 3 further supports the fact that different enzymes respond differently and indicates that sialyltransferases and fucosyltransferases recognize N-acetyllactosamine in a different conformation. Collectively, the data presented here indicate that small conformational changes of an oligosaccharide acceptor induced by, for example, the protein structure can be employed to modulate the patterns of protein glycosylation.  相似文献   

7.
We have determined that, in addition to its receptor-destroying activity, the influenza virus neuraminidase is capable of efficiently forming virus-like particles (VLPs) when expressed individually from plasmid DNA. This observation applies to both human subtypes of neuraminidase, N1 and N2. However, it is not found with every strain of influenza virus. Through gain-of-function and loss-of-function analyses, a critical determinant within the neuraminidase ectodomain was identified that contributes to VLP formation but is not sufficient to accomplish release of plasmid-derived VLPs. This sequence lies on the plasma membrane-proximal side of the neuraminidase globular head. Most importantly, we demonstrate that the antiviral restriction factor tetherin plays a role in determining the strain-specific limitations of release competency. If tetherin is counteracted by small interfering RNA knockdown or expression of the HIV anti-tetherin factor vpu, budding and release capability is bestowed upon an otherwise budding-deficient neuraminidase. These data suggest that budding-competent neuraminidase proteins possess an as-yet-unidentified means of counteracting the antiviral restriction factor tetherin and identify a novel way in which the influenza virus neuraminidase can contribute to virus release.  相似文献   

8.
Biomechanical forces are major epigenetic factors that determine the form and differentiation of skeletal tissues, and may be transduced through cell adhesion to the intracellular biochemical signaling pathway. To test the hypothesis that stepwise stretching is translated to molecular signals during early chondrogenesis, we developed a culture system to study the proliferation and differentiation of chondrocytes. Rat embryonic day-12 limb buds were microdissected and dissociated into cells, which were then micromass cultured on a silicone membrane and maintained for up to 7 days. Stepwise-increased stretching was applied to the silicone membrane, which exerted shearing stress on the cultures on day 4 after the initiation of chondrogenesis. Under stretched conditions, type II collagen expression was significantly inhibited by 44% on day 1 and by 67% on day 2, and this difference in type II collagen reached 80% after 3 days of culture. Accumulation of type II collagen protein and the size of the chondrogenic nodules had decreased by 50% on day 3. On the other hand, expression of the non-chondrogenic marker fibronectin was significantly upregulated by 1.8-fold on day 3, while the up-regulation of type I collagen was minimal, even by day 3. The downregulation in the expression of chondrogenic markers was completely recovered when cell-extracellular matrix attachment was inhibited by Gly-Arg-Gly-Asp-Ser-Pro-Lys peptide or by the application of blocking antibodies for alpha2, alpha5 or beta1 integrins. We conclude that shearing stress generated by stepwise stretching inhibits chondrogenesis through integrins, and propose that signal transduction from biomechanical stimuli may be mediated by cell-extracellular matrix adhesion.  相似文献   

9.
V M Niven  J D Aplin 《FEBS letters》1985,193(2):141-144
Attachment and spreading of human FL cells on a subcellular matrix (SCM) preparation made by treating confluent cell monolayers with deoxycholate are insensitive to the presence of monensin. However, if the cell suspension is surface-iodinated prior to adhesion using the LPO/H2O2 system, cell spreading on SCM is inhibited by 1 microM monensin. The suggested interpretation is that cell surface components required for cell spreading on SCM are inactivated by iodination and need replacement from intracellular reserves by a monensin-sensitive pathway. This pathway is not required in the absence of iodination when sufficient surface components (or a monensin-independent pathway of surface expression) are available. Support for this interpretation is obtained by means of double-iodination experiments in which surface-labelled cells adhere and spread, are detached and labelled a second time and then allowed to adhere again to SCM. Cell spreading in the second case is inhibited by approximately 80%, suggesting that both previously expressed and newly recruited receptors are inactivated.  相似文献   

10.
Adhesion of lymphocytes to high endothelial venule (HEV) cells is the first step in the migration of these cells from blood into lymph nodes and Peyer's patches (PP). In the present study, we isolated and cultured HEV cells from PP of the rat and assessed their capacity to interact with lymphocytes. Flow cytometric analysis with a rat HEV-specific mAb KJ-4 revealed that greater than 90% of the cultured cells were stained by the antibody. Furthermore, confluent monolayers of PP HEV cells retained the capacity to support the adhesion of lymphocytes from spleen, thoracic duct, and lymph nodes but not binding of immature cells from thymus and bone marrow, which are deficient in cells capable of binding to HEV in vivo. In addition, intraepithelial lymphocytes that preferentially migrated into mucosal lymphoid tissues were also enriched in cells that adhered to the endothelial monolayers. The binding process required energy, was calcium-dependent, and could be inhibited by cytochalasin D, trypsin, and mixed glycosidase. Interestingly, pretreatment of PP HEV cells with rTNF, IFN-gamma, or granulocyte-macrophage CSF significantly increased the endothelial adhesiveness for thoracic duct lymphocytes in a time- and dose-dependent manner. In contrast, stimulation of lymphocytes with phorbol ester or TNF resulted in the rapid modulation of the surface expression of the PP homing receptor and decrease in lymphocyte binding to normal or TNF-stimulated HEV cells. The adhesion of lymphocytes to normal or cytokine-stimulated HEV cells can be blocked by pretreatment of lymphocytes, but not HEV cells, with the PP homing receptor-specific 1B.2.6 antibody. Taken together, these experiments provide strong evidence that the interaction between lymphocytes and cultured HEV cells are mediated by adhesive mechanisms that regulate lymphocyte entry into PP in vivo and that cytokines can promote HEV adhesiveness for lymphocytes through increased expression of organ-specific ligands on HEV cells.  相似文献   

11.
  相似文献   

12.
13.
Although abundant Go has been found in nervous tissues and it has been implicated in neuronal differentiation, the mechanism of how Go modulates neuronal differentiation has not been defined. Here, we report that the alpha subunit of Go (alphao) modulates neurite outgrowth by interfering with the signaling pathway initiated by cyclic AMP (cAMP). In F11 cells, cAMP induced neurite outgrowth and activated cAMP-responsive element binding protein (CREB). Specific inhibition of cAMP-dependent protein kinase reduced both CREB activity and neurite outgrowth (NOG). Interestingly, cAMP reduced phosphorylation of extracellular signal-regulated kinase (Erk). Neither a dominant negative form nor an active form of Ras altered neurite outgrowth. Expression of alphao (alphao(wt)) decreased the average length of neurites but increased the number of neurites per cell. An active mutant, alphaoQ205L, which lost GTPase activity and thus could not bind to Gbetagamma, gave similar results, suggesting that the effect of alphao is not mediated through Gbetagamma. Expression of ao(wt) or alphaoQ205L also prohibited CREB activation. Thus, activation of Erk may not be essential for neuronal differentiation in F11 cells and alphao may cause changes in NOG by inhibiting CREB activation.  相似文献   

14.
15.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal alpha-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3' untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3' UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3' UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3' UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules.  相似文献   

16.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   

17.
Chronic overconsumption of a Western diet has been identified as a major risk factor for diabetes, yet precisely how each individual component contributes to defects in glucose homeostasis independent of consumption of other macronutrients remains unclear. Eight-week-old male Sprague Dawley rats were randomized to feeding with one of six semi-pure diets: control, processed (high advanced glycation end products/AGE), high protein, high dextrose (glucose polymer), high in saturated fat (plant origin), or high in saturated fat (animal origin). After chronic feeding for 24 weeks, body composition was determined by bioelectrical impedance spectroscopy and glucose homeostasis was assessed. When compared to the control and high AGE diets, excess consumption of the diet high in saturated fat (animal source) increased body weight and adiposity, and decreased insulin sensitivity, as defined by HOMA IR, impaired skeletal muscle insulin signaling and insulin hypersecretion in the context of increased circulating glucagon-like peptide (GLP-1). Compared to the control diet, chronic consumption of the high AGE, protein or dextrose diet increased fasting plasma glucose, decreased fasting plasma insulin and insulin secretion. These diets also reduced circulating GLP-1 concentrations. These data suggest that individual components of a western diet have differential effects in modulating glucose homeostasis and adiposity. These data provide clear evidence of a link between over-consumption of a western diet and the development of diabetes.  相似文献   

18.
19.
We used a 279 bp cDNA probe derived from a Dictyostelium alpha-actinin genomic sequence to assay the degree of homology between alpha-actinin from slime molds, mammalian and chicken cells. Recognition of this probe by vertebrate cells was shown in Southern and Northern blots, and by antisense RNA-induced depression of endogenous alpha-actinin synthesis in living cells. Micro-injection of Dictyostelium or chicken gizzard alpha-actinin resulted in incorporation of these proteins in stress fibers, peripheral microfilament belts and adhesion sites. Alpha-actinin-injected cells showed a marked, transient reduction of synthesis of the corresponding endogenous protein. These data emphasize the high degree of conservation of alpha-actinin during evolution and show for the first time autoregulation of synthesis for a microfilament protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号