首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract. Investigations of various species of moths have suggested that the biosynthesis of sex pheromone in the abdominal pheromone glands of females may be at least partly regulated by neuroendocrine mechanisms. Few studies, however, have explored the mechanisms underlying the release of sex pheromone. In experiments on the sphinx moth Manduca sexta (L.) (Lepidoptera: Sphingidae), we have monitored the time course of sex-pheromone release in scotophase females with the aid of an electroantennogram bioassay based on the highly sensitive and selective sex-pheromone receptor neurones of the male antenna. Pheromone release was evoked by orthodromic stimulation of the ventral nerve cord. Neurally stimulated release occurred with a subsecond latency and did not depend on bioactive factors in the haemolymph or on movement of the abdomen or the ovipositor. Severing the most medial pair of nerves posterior to the terminal abdominal ganglion (the terminal nerves) eliminated pheromone release, but not abdominal contractions. Release was also inhibited reversibly if the descending Ca2+-dependent synaptic input to the terminal ganglion was blocked by exposure to elevated concentrations of Mg2+. These findings indicate that the release of sex pheromone from the pheromone gland in female M. sexta is a true neuroeffector response and that the gland appears to be controlled by neurones that project to it from the terminal abdominal ganglion.  相似文献   

2.
A [3H]-PBAN (pheromone biosynthesis-activating neuropeptide) analog was synthesized, and binding of the radioligand to a specific PBAN-antiserum was achieved. The inhibition of binding of the radioligand by unlabeled PBAN, several PBAN analogs, and other competitors was studied and a specific radio-immunoassay was developed. Using this radioimmunoassay we found PBAN-like immunoreactivity in methanol extracts of hemolymph and neural tissues from females. Higher levels of PBAN-like immunoreactivity in extracts of brain-suboesophageal ganglion complexes, corpora cardiaca, thoracic ganglia, and abdominal ganglia were observed during the 4-5th h scotophase when compared to the PBAN-like immunoactivity levels during the 6-11th h photophase. On the other hand, the concentrations of PBAN-like immunoreactivity, in the terminal abdominal ganglion were higher during the photophase relative to minimal levels observed during the scotophase, indicating an accumulation before the onset of pheromone production. These differences in concentrations of PBAN were also reflected in the stimulation of in vitro pheromone glands, whereby significant stimulations were obtained by scotophase and photophase brain extracts, scotophase thoracic ganglia extracts, and photophase terminal abdominal ganglia extracts. No detectable levels of PBAN were found in hemolymph extracts during the sampling periods.  相似文献   

3.
The rhythmic exposure of the sex pheromone gland during calling in female Utetheisa ornatrix (L.) (Lepidoptera: Arctiidae) is under neural control. Two lines of evidence support this conclusion. (1) Bisection of the ventral nerve cord of adult females prevented calling while sham-operations had little effect. (2) Brief electrical stimulation of the ventral nerve cord in isolated abdomens elicited extended trains of regularly spaced gland exposures indistinguishable from normal calling behaviour. The coordination of calling behaviour is localized in the terminal abdominal ganglion and the peripheral structures that it innervates. Removal of the corpora allata and corpora cardiaca, neurohaemal organs previously implicated in calling control, did not affect calling behaviour.  相似文献   

4.
ABSTRACT. Rhythmic respiratory nerve activity was recorded in the dragonfly larvae, Anax parthenope Julius Brauer (Anisoptera). Alternating expiratory and inspiratory bursts of spikes occurred in abdominal nerve cords isolated from all peripheral connections. These bursts are similar to the activity recorded in semi-intact preparations, suggesting that the respiratory rhythm can be generated without peripheral sensory feedback. Expiratory bursts started and ended at the same time in different segments of semi-intact preparations. When connectives were severed, the nerve cord separated from the last abdominal ganglion did not normally show rhythmic bursts; the last ganglion alone and the nerve cord connected to the last ganglion exhibited the rhythmic bursts. However, in a few cases the nerve cord separated from the last ganglion exhibited the rhythm. The results suggest that the last ganglion contains the main oscillator, but that other weak oscillators occur elsewhere.  相似文献   

5.
Selected tissues presumably involved in the control of sex pheromone production were analyzed by ELISA for the presence of PBAN-like immunoreactivity (PBAN-IR) in Spodoptera littoralis. The temporal distribution pattern of PBAN-IR in the hemolymph is similar to that of pheromone production in the gland. On the other hand, analysis of the retrocerebral complex, brain-subesophageal ganglion complex, and terminal abdominal ganglion (TAG) revealed similar PBAN-IR levels in both photophase and scotophase periods. Pheromonotropic activity exhibited by both hemolymph and TAG, as determined by a modified in vitro bioassay, agrees with the results of the immunochemical analyses. Severing the ventral nerve cord anterior to the TAG impaired normal sex pheromone production by second-scotophase females. These results are discussed in the context of how sex pheromone biosynthesis is regulated by PBAN in S. littoralis. © 1996 Wiley-Liss, Inc.  相似文献   

6.
A direct enzyme‐linked immunosorbent assay has been developed and applied to the analysis of PBAN immunoreactivity in female hemolymph of the cabbage armyworm, Mamestra brassicae. PBAN‐IR determinations have been carried out with third scotophase insects at different times of the photoperiod. The rhythm of calling and the pattern of pheromone production by third scotophase females at different times of the photoperiod have also been determined. PBAN‐IR and calling are well correlated. However, whereas pheromone titers decrease, both PBAN‐IR levels and percentage of calling females remain high in the last hours of the scotophase. These results are discussed in the context of the regulation of sex pheromone biosynthesis in M. brassicae. Arch. Insect Biochem. Physiol. 40:80–87, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
In order to understand better the mechanism of regulation of pheromone production in moth species, we performed ELISA analyses to detect and follow pheromone biosynthesis activating neuropeptide-like immunoreactivity (PBAN-IR) in different tissues of the two noctuidae species, Spodoptera littoralis and Mamestra brassicae. Male S. littoralis and both male and female M. brassicae brain-subesophageal ganglion (Br-SEG), corpora cardiaca-corpora allata complex, and terminal abdominal ganglion extracts showed the presence of PBAN-IR during both the photophase and the scotophase. However, PBAN-IR was found only in scotophase in female hemolymph. Analysis of extracts of Br-SEG, terminal abdominal ganglion, and hemolymph after HPLC fractionation showed that the most immunoreactive fraction in all the extracts exhibited the same retention time as Hez-PBAN, suggesting that similar PBAN-like material is present in all these tissues. In vivo studies demonstrated that severing the ventral nerve cord in M. brassicae anterior to the terminal abdominal ganglion impaired normal sex pheromone production by third-scotophase females, as was previously shown in S. littoralis. Additionally, PBAN-IR levels were lower in hemolymph samples obtained at the peak of pheromone production in both S. littoralis and M. brassicae females that had the ventral nerve cord severed compared with sham operated animals. These results, along with earlier reported data, indicate that control of pheromone production in both species may involve both PBAN (or PBAN-like peptides) and the ventral nerve cord and support the hypothesis that a neural input from the ventral nerve cord triggers the release of the pheromonotropic peptide(s) into the hemolymph, which then acts directly on the pheromone gland to stimulate pheromone biosynthesis. Arch. Insect Biochem. Physiol. 37:295–304, 1998. © 1998 Wiley-Liss, Inc.
  • 1 We thank Germán Lázaro for insect rearing.
  •   相似文献   

    8.
    【目的】揭示绿盲蝽Apolygus lucorum腹神经节的组成结构。【方法】采用免疫组织化学染色方法,利用突触蛋白抗体对绿盲蝽成虫的腹神经节进行免疫标记,激光共聚焦扫描显微镜扫描照相获得原始数据,用图像分析软件进行标记,构建三维结构模型。【结果】绿盲蝽成虫腹神经节位于腹神经索的末端,与其前方的后胸神经节和中胸神经节紧密融合,形成后部神经节。与脑和胸神经节类似,腹神经节由周围的细胞体和内部的神经髓构成。腹神经节的神经纤维束主要包括位于腹侧的两条纵向神经连索和向两侧发出的9束神经纤维。9束神经纤维连接着9个神经原节,即富含突触联系的神经髓。这些神经原节紧密融合,无明显的边界,最后两节形成膨大的末端腹神经节。两侧的神经原节由横向的神经连锁连接起来。腹神经节外周的细胞体数量较多,排列紧密,大小一致,仅在前端背侧中间和后端腹侧中间位置分别有2个和5个体积较大的细胞体。【结论】本研究结果明确了绿盲蝽腹神经节的结构,为进一步研究昆虫的行为调控及神经系统发育和演化奠定一定的形态学基础。  相似文献   

    9.
    Substantial progress has been made toward understanding the neuroendocrine regulation of sex-pheromone glands in Lepidoptera, but several recent studies have revealed that direct contact of the pheromone gland with blood-borne factors is not necessary to induce pheromone biosynthesis and release in some species. The nervous system provides an alternate route of activation. Evidence from several species indicates that the pheromone gland is innervated and regulated by neural activity. Electrical stimulation of efferent axons arising from the terminal abdominal ganglion results in a significant increase in pheromone production, and neural stimulation furthermore evokes the rapid release of pheromone into the surrounding air. In some heliothine moths, the biogenic monoamine octopamine stimulates pheromone production, and octopamine has also been isolated from pheromone gland tissue. Moreover, the critical period for maximal octopamine action mirrors the time when peak levels of octopamine are present in the gland. These findings suggest that octopamine is involved in the regulation of pheromone biosynthesis and/or release, but its actions depend on additional factors associated with age and photoperiod. The combined evidence using anatomical, electrophysiological, and biochemical methods indicates that the pheromone gland is innervated and regulated by neurons that arise in the terminal abdominal ganglion. Indirect evidence suggests that at least some of this innervation is octopaminergic. In these respects, the pheromone gland in Lepidoptera exhibits characteristics of other neuroeffector systems in insects.  相似文献   

    10.
    We compared the calling and mating behavior and volatile release of wild males Anastrepha ludens (Loew) with males from 4 mass‐reared strains: (i) a standard mass‐reared colony (control), (ii) a genetic sexing strain (Tap‐7), (iii) a colony started from males selected on their survival and mating competitiveness abilities (selected), and (iv) a hybrid colony started by crossing wild males with control females. Selected and wild males were more competitive, achieving more matings under field cage conditions. Mass‐reared strains showed higher percentages of pheromone calling males under field conditions except for Tap‐7 males, which showed the highest percentages of pheromone calling males under laboratory cage conditions. For mature males of all strains, field‐cage calling behavior increased during the last hour before sunset, with almost a 2 fold increase exhibited by wild males during the last half hour. The highest peak mating activity of the 4 mass‐reared strains occurred 30 min earlier than for wild males. By means of solid phase microextraction (SPME) plus gas chromatography‐mass spectrometry (GC‐MS), the composition of volatiles released by males was analyzed and quantified. Wild males emitted significantly less amounts of (E,E)‐α‐farnesene but emitted significantly more amounts of (E,E)‐suspensolide as they aged than mass‐reared males. Within the 4 mass‐reared strains, Tap‐7 released significantly more amounts of (E,E)‐α‐farnesene and hybrid more of (E,E)‐suspensolide. Differences in chemical composition could be explained by the intrinsic characteristics of the strains and the colony management regimes. Characterization of calling behavior and age changes of volatile composition between wild and mass‐reared strains could explain the differences in mating competitiveness and may be useful for optimizing the sterile insect technique in A. ludens.  相似文献   

    11.
    1. The escape behavior of the cockroach, Periplaneta americana, is known to be modulated under various behavioral conditions (Camhi and Volman 1978; Camhi and Nolen 1981; Camhi 1988). Some of these modulatory effects occur in the last abdominal ganglion (Daley and Delcomyn 1981a, b; Libersat et al. 1989) and others in the thoracic ganglia (Camhi 1988). Neuromodulator substances are known to underlie behavioral modulation in various animals. Therefore, we have sought to determine whether topical application of putative neuromodulators of the escape circuit enhance or depress this circuit, and whether these effects differ in the last abdominal vs. the thoracic ganglia. 2. Topical application of the biogenic amines serotonin and dopamine to the metathoracic ganglion modulates the escape circuitry within this ganglion; serotonin decreases and dopamine enhances the response of leg motoneurons to activation of interneurons in the abdominal nerve cord by electrical or wind stimulation. 3. The neuropil of the thoracic ganglia contains many catecholamine-histofluorescent processes bearing varicosities, providing a possible anatomical substrate for dopamine release sites. 4. Topical application of octopamine to the terminal abdominal ganglion enhances the response of abdominal interneurons to wind stimulation of the cerci. In contrast, serotonin and dopamine have no effect at this site. 5. It is proposed that release of these biogenic amines may contribute to the known modulation of the cockroach escape response.  相似文献   

    12.
    A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV–VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine‐dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.  相似文献   

    13.
    Auto-spermatophore extrusion is a kind of spermatophore extrusion without genital coupling in the male cricket. It rarely occurred in intact males paired with a female, while it frequently occurred in all the males with the connectives cut under restraint and dissection. The time interval (SPaSE) between spermatophore preparation and auto-spermatophore extrusion was found to be comparable to that (RS2) of the time-fixed sexually refractory stage measured by the calling song. According to extracellular spike recording, the dorsal pouch motoneuron (mDP), which singly innervates the dorsal pouch muscles and is responsible for spermatophore extrusion, showed a burst discharge in association with auto-spermatophore extrusion with an interval similar to RS2 in males with the connectives transected between the 6th abdominal ganglion and the terminal abdominal ganglion (TAG) after spermatophore preparation. These results strengthened our previous conclusion that the reproductive timer for RS2 is located in the TAG, and demonstrated that it functions normally even in the TAG separated from the rest of the central nervous system.  相似文献   

    14.
    The brain is not required for oviposition in five species of Blaberidae; the control centre for formation, 90° counterclockwise rotation, and retraction of the oötheca lies in the abdomen. A similar centre controls oötheca formation and 90° clockwise rotation in Blattella germanica (Blattellidae). It is suggested that during oviposition, abdominal proprioceptors or musculature contribute nervous information to the last abdominal ganglion. Nerve impulses are presumably integrated in the last abdominal ganglion and transmitted to the colleterial glands, oviducts, and ovipositor. In Periplaneta americana (Blattidae), the brain is needed for initiating egg case formation, but it is unnecessary once the process has begun. The results suggest a divergence of control centres for oviposition between the Blaberoidea and Blattoidea.  相似文献   

    15.
    We have tested the effect of a known insect neuromodulator, octopamine, on flight initiation in the cockroach. Using minimally dissected animals, we found that octopamine lowered the threshold for windevoked initiation of flight when applied to either of two major synaptic sites in the flight circuitry: 1) the last abdominal ganglion, where wind-sensitive neurons from the cerci excite dorsal giant interneurons, or 2) the metathoracic ganglion, where the dorsal giant interneurons activate interneurons and motoneurons which are involved in producing the rhythmic flight motor pattern in the flight muscles (Fig. 2).Correlated with this change in flight initiation threshold, we found that octopamine applied to the last abdominal ganglion increased the number of action potentials produced by individual dorsal giant interneurons when recruiting the cereal wind-sensitive neurons with wind puffs (Figs. 3, 4, 5) or with extracellular stimulation of their axons (Fig. 6). Octopamine increases the excitability of the giant interneurons (Figs. 7, 8). Also, when we stimulated individual dorsal giant interneurons intracellularly, the number of action potentials needed to initiate flight was reduced when octopamine was applied to the metathoracic ganglion (Fig. 9).Abbreviations EMG electromyogram - dGIs dorsal giant interneurons - GI giant interneuron - A6 sixth abdominal ganglion - T3 third thoracic ganglion - EPSP excitatory postsynaptic potential  相似文献   

    16.
    The present study investigates the effects of age and mating status on the circadian variations of gland sex pheromone titre in female Spodoptera litura Fabricius. Similar to other nocturnal moths, S. litura females exhibit circadian variations of gland sex pheromone contents, with higher levels during scotophase and lower levels during photophase. The sex pheromone titre in the glands peaks during the first scotophase after eclosion and sharply declines afterwards. Higher pheromone contents during scotophase may facilitate female reproductive activities, and the negative relationship between pheromone titre and female calling is likely the result of pheromone release during female calling. Interestingly, the present study demonstrates that mated S. litura females have significantly higher sex pheromone titre in their pheromone glands (PGs) than virgin females. This finding contrasts with all previous studies of other insect species, in which mating generally reduces the sex pheromone titre in female PGs. In S. litura, mating and male accessory gland fluids can suppress female calling behaviours and re‐matings. These results suggest that the suppression of female calling behaviours by mating and male accessory gland fluids may significantly reduce the release of sex pheromones and thus result in higher sex pheromone titre in the PGs of mated females.  相似文献   

    17.
    A morpho-functional investigation of the sex pheromone-producing area was correlated with the pheromone release mechanism in the female gypsy moth Lymantria dispar. As assessed by male electroantennograms (EAG) and morphological observations, the pheromone gland consists of a single-layered epithelium both in the dorsal and ventral halves of the intersegmental membrane between the 8th and 9th abdominal segments. By using the male EAG as a biosensor of real-time release of sex pheromone from whole calling females, we found this process time coupled with extension movements of the ovipositor. Nevertheless, in females in which normal calling behavior was prevented, pheromone release was detected neither in absence nor in presence of electrical stimulation of the ventral nerve cord/terminal abdominal ganglion (TAG) complex. Tetramethylrhodamine-conjugated dextran amine stainings also confirm the lack of any innervation of the gland from nerves IV to VI emerging from the TAG. These findings indicate that the release of sex pheromone from the glands in female gypsy moths is independent of any neural control exerted by the TAG on the glands, at least by way of its three most caudally located pairs of nerves, and appears as a consequence of a squeezing mechanism in the pheromone-producing area.  相似文献   

    18.
    1. Indolamine levels were determined in the cerebral ganglion, the thoraco-abdominal nerve cord (except the last ganglion), and the 6th abdominal ganglion of females of Blaberus craniifer. 2. Measurements were made at the imaginal molt and on fed and crowded imagos at 10, 20 and 30 post-imaginal days. 3. Indolamines were found in the nervous system of young females, but 5-hydroxytryptophan was only detected in the thoraco-abdominal nerve cord. 4. Amine levels were related to the age of the cockroach, particularly during this period, to post-ecdysis events and ootheca formation.  相似文献   

    19.
    The diel periodicity of female calling behaviour in Ditula angustiorana (Haw.) was studied under laboratory conditions. Observations throughout photophases and scotophases showed that D. angustiorana females presented a rare diurnal calling behaviour with two distinct calling periods, one at the first part of the photophase (L+5) and another one at the end (L+14). Mating only occurred during the second calling period (L+14). Five components were identified in extracts of the pheromone glands: Z10–14:Ac, 14:Ac, Z10–14:OH, Z8–14:Ac, Z8–14:OH in the average ratio of 74.1/18.2/4.8/2.2/0.6 respectively. The blend ratio remains similar throughout the photoperiod, whilst the total quantity of pheromone components reached a maximum during the calling period overlapping the mating period (L+14). Wind tunnel experiment confirms that the synthetic blend baited with the identified pheromone components was as attractive as calling females for males. The particular chemical structure of the components within Tortricidae and the particular occurrence of the two calling periods, one not matching any reproductive behaviour are discussed in terms of phylogeny and sexual selection.  相似文献   

    20.
    Abstract Beet armyworm (BAW), Spodoptera exigua, is becoming one of more and more serious pests in China in recent years. As a part of research program of sex pheromone and its application of BAW in China, the hourly and daily variation of calling behavior and pheromone production of BAW females were investigated. Both calling behavior and titers of 4 sex pheromone components showed distinct diel rhythms, and the two peak periods were synchronous. In comparison, the calling activity lasted shorter period of time with a longer peak time, whereas the production of the sex pheromone lasted throughout the whole scotophase and part of the photophase with a very short peak time. The calling behavior began at the middle scotophase, reached the maximum at the middle‐later scotophase, and continued the maximal calling activity until the end of the scotophase. When the light was on, the calling percentage reduced sharply, and all females stopped calling 1 hour later. The variation patterns of the 4 pheromone components in the glands of the 3 day old moths were similar from one to another. From 0.5 h before to 4.5 h into scotophase, the titers increased slightly, but at 6.5 h they showed a significant increase up to the peak values of the scotophase. Soon at 8.5 h into the scotophase, they decreased significantly and thereafter gradually to undetectable level at 4.5 h into the next photophase. The daily change experiment showed that BAW females began calling at 0 scotophase, became fully active in calling at 3rd scotophase, and maintained the calling activity to 7th scotophase. There was no significant difference in pheromone titers among different day‐old moths.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号