首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Squamate reptiles are uniquely suited to study of evolution of reproductive mode and pattern of embryonic nutrition. Viviparous species have evolved from oviparous ancestors on numerous occasions, patterns of nutritional provision to embryos range widely from lecithotrophy, at one end of a continuum, to placentotrophy at the other, and structure and function of the maternal-embryonic relationship is highly constrained resulting in parallel evolutionary trajectories among taxa. Embryos of oviparous species primarily receive nourishment from yolk, but also mobilize a significant quantity of calcium from the eggshell. Most viviparous species also are predominantly lecithotrophic, yet all viviparous species are placentotrophic to some degree. Similarities in embryonic development and nutritional pattern between oviparous species and most viviparous species suggest that the pattern of nutrition of oviparous squamates is an exaptation for the evolution of viviparity and that placentotrophy and viviparity evolve concomitantly. The few species of squamates that rely substantially on placentotrophy have structural modifications of the interface between the embryo and mother that are interpreted as adaptations to enhance nutritional exchange. Recent studies have extended understanding of the diversity of embryonic nutrition and placental structure and have resulted in hypotheses for transitions in the evolution of placentotrophy, yet data are available for few species. Indirect tests of these hypotheses, by comparison of structural-functional relationships among clades in which viviparity has evolved, awaits further study of the reproductive biology of squamates.  相似文献   

3.
The biological pump describes the transport of particulate matter from the sea surface to the ocean’s interior including the seabed. The contribution by gelatinous zooplankton bodies as particulate organic matter (POM) vectors (“jelly-falls”) has been neglected owing to technical and spatiotemporal sampling limitations. Here, we assess the existing evidence on jelly-falls from early ocean observations to present times. The seasonality of jelly-falls indicates that they mostly occur after periods of strong upwelling and/or spring blooms in temperate/subpolar zones and during late spring/early summer. A conceptual model helps to define a jelly-fall based on empirical and field observations of biogeochemical and ecological processes. We then compile and discuss existing strategic and observational oceanographic techniques that could be implemented to further jelly-falls research. Seabed video- and photography-based studies deliver the best results, and the correct use of fishing techniques, such as trawling, could provide comprehensive regional datasets. We conclude by considering the possibility of increased gelatinous biomasses in the future ocean induced by upper ocean processes favouring their populations, thus increasing jelly-POM downward transport. We suggest that this could provide a “natural compensation” for predicted losses in pelagic POM with respect to fuelling benthic ecosystems.  相似文献   

4.
A state-of-the-art report is presented on recent progress in selected areas of myodynamics, but also on problems that severely hamper the further development of the discipline. Significant advances have been made in elucidating the force-producing interaction between actin and the myosin-S1-subunit, including the localization of the most probable molecular site of power stroke initiation. Concerning the architecture of the myostructures, strong experimental evidence has accumulated for numerous intra-, inter-, and extramuscular pathways for lateral force transmission in addition to the serial sarcomere-to-sarcomere myotendinous path.

It is shown that contemporary muscle models are inadequate in most respects and lag far behind the requirements an appropriate myodynamic model should fulfil. A similar comment applies to the current approaches designed to solve the myoskeletal indeterminacy problem. These formulations neglect myodynamic properties and do not allow for the implementation of biologically realistic objective functions. The solutions currently obtained are highly unsatisfactory. New research directions to rectify these situations are suggested, also with regard to the identification of subject-specific myodynamic parameters.  相似文献   


5.
6.
The prevalence of urolithiasis has been increasing for the past few decades in industrialized nations. Uric acid calculi account for a significant percentage of urinary stones. Certain risk factors may be involved in the pathogenesis of uric acid nephrolithiasis, including hyperuricosuria, low urinary volume, and persistently low urinary pH. Patients with medical conditions that promote profound hyperuricosuria are at high risk of developing uric acid calculi. These conditions include chronic diarrheal states; myeloproliferative disorders; insulin resistance, including diabetes mellitus; and monogenic metabolic disorders, such as Lesch-Nyhan syndrome. Computed tomography can provide a definitive diagnosis. Except in cases in which there is severe obstruction, progressive azotemia, serious infection, or unremitting pain, the initial treatment of patients with uric acid nephrolithiasis should be medical dissolution therapy because this approach is successful in the majority of cases. A thorough review of the epidemiology and pathophysiology of uric acid nephrolithiasis is crucial for the diagnosis, treatment, and prevention of stones in patients with this condition.  相似文献   

7.
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the ‘size principle’, governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.  相似文献   

8.
Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.  相似文献   

9.
10.
NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.  相似文献   

11.
The current state of research in the field of paleobotany is reviewed, with emphasis on those areas that deal with more biological approaches to paleobotany. These would include such subjects as the reproductive biology of fossil plants, pollination biology in selected groups, paleobiochemistry, and information on the interaction of plants with other organisms (plant/animal interactions) and their environment (paleoecology). Also discussed are some of the more recent contributions to our understanding of Precambrian paleobiology and early angiosperm reproduction and evolution. Finally, we offer some speculation on the contributions that various areas of paleobotany may provide in the future.  相似文献   

12.
Squamate reptiles represent an ideal group for studies of viviparity, because they have evolved this reproductive pattern frequently, relatively recently, and at low taxonomic levels. A phylogenetic approach shows particular promise in helping us interpret anatomical, physiological, and ecological diversity. This review summarizes four major categories of active investigation: (1) reproductive anatomy and physiology; (2) placental structure and function; (3) reproductive endocrinology; and (4) reproductive and physiological ecology. Evolutionary reconstructions suggest that on many occasions viviparity has evolved concomitantly with functional placentation, through reduction of the shell membrane and hormonal modifications that prolong gestation. Studies of placentotrophic clades as well as reproductively bimodal species offer great potential for explaining the evolution of viviparity and placentation. However, live-bearing squamates are reproductively diverse, and appear to have solved physiological problems associated with viviparity by a variety of mechanisms. Consequently, studies on one or a few squamate species appear increasingly unlikely to yield all-inclusive explanations. Future studies and analyses should abandon assumptions of universal physiological mechanisms and a single historical sequence, in favor of the documentation of diversity in phylogenetic and quantitative terms.  相似文献   

13.
Large lakes currently exhibit ecosystem responses to environmental changes such as climate and land use changes, nutrient loading, toxic contaminants, hydrological modifications and invasive species. These sources have impacted lake ecosystems over a number of years in various combinations and often in a spatially heterogeneous pattern. At the same time, many different kinds of mathematical models have been developed to help to understand ecosystem processes and improve cost-effective management. Here, the advantages and limitations of models and sources of uncertainty will be discussed. From these considerations and in view of the multiple environmental pressures, the following emerging issues still have to be met in order to improve the understanding of ecosystem function and management of large lakes: (1) the inclusion of thresholds and points-of-no-return; (2) construction of general models to simulate biogeochemical processes for a large number of lakes rather than for individual systems; (3) improvement of the understanding of spatio-temporal variability to quantify biogeochemical fluxes accurately; and (4) inclusion of biogeochemical linkages between terrestrial and aquatic ecosystems in model approaches to assess the effects of external environmental pressures such as land-use changes. The inclusion of the above-mentioned issues would substantially improve models as tools for the scientific understanding and cost-effective management of large lakes that are subject to multiple environmental pressures in a changing future.  相似文献   

14.
Sexual dimorphism, widespread in the animal kingdom, describes differences between the sexes in size, shape and many other traits. Sexual size dimorphism (SSD) plays a significant role in understanding life history evolution and mating systems. The snakelike morphology of limbless caecilian amphibians lacking obvious secondary sexual characters (in contrast to frogs and salamanders) impedes accurate intrasexual comparisons. In this study, sexual size dimorphism in the oviparous caecilian Ichthyophis cf. kohtaoensis, a phylogenetically basal caecilian, was analysed. Females were larger in all body and head characters tested. However, when adjusted to body size (total length), females differed only in their cloacal shape. Clutch volume was positively correlated to female body size, thus female fecundity increased with body size supporting the hypothesis of a fecundity-selected SSD in the oviparous Ichthyophis cf. kohtaoensis. A review of the present SSD data for caecilians shows that many species are monomorphic for body size but show dimorphism in head size, while other species demonstrate female-biased SSD. Male-biased SSD has not been reported for caecilians. To understand life history evolution in caecilians, further studies on the reproductive biology of other taxa are urgently needed, in particular for rhinatrematids and uraeotyphlids. New data will allow phylogenetically controlled comparative analyses to fully explore the pattern of SSD among caecilian lineages.  相似文献   

15.
16.
The International Journal of Life Cycle Assessment - This paper reviews the state-of-the art research in life cycle assessment (LCA) applied to buildings. It focuses on current research trends, and...  相似文献   

17.
18.
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号