首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether lactic acid production contributes significantly to the cardiac responses to muscular dynamic exercise, we administered intravenous sodium dichloroacetate (32 mumol.kg-1.min-1), a pyruvate dehydrogenase activator that facilitates lactate metabolism via the tricarboxylic cycle, in 12 dogs during two graded levels of treadmill exercise. Similar exercise was carried out in nine normal dogs receiving equimolar doses of NaCl. In the latter group, arterial lactate increased progressively from 0.80 +/- 0.11 (SE) mmol/l at rest to 2.13 +/- 0.28 mmol/l by the end of exercise. In contrast, arterial lactate did not change significantly (0.98 +/- 0.12 to 0.95 +/- 0.11 mmol/l) during exercise in dogs receiving dichloroacetate infusion. Dichloroacetate infusion also reduced the increases in plasma norepinephrine, heart rate, and left ventricular contractile indexes that occurred during exercise, suggesting that the sympathetic cardiac stimulation occurring during exercise may be related to the production of lactic acid. However, dichloroacetate affected neither the net increase in cardiac output nor the relationship between total body oxygen consumption and cardiac output that occurred during exercise. Thus we conclude that lactic acid production is not essential to the increase in cardiac output that occurs during mild-to-moderate exercise.  相似文献   

2.
Hepatic lactate uptake versus leg lactate output during exercise in humans.   总被引:1,自引:0,他引:1  
The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 +/- 4% of maximal O(2) uptake, (.)Vo(2max)) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 +/- 0.5 vs. 6.5 +/- 0.6 mmol/min; mean +/- SE) and at an arterial lactate of 2.0 +/- 0.2 mM, the leg lactate output of 3.0 +/- 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 +/- 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 +/- 0.4 vs. 6.2 +/- 1.3 mmol/min) and the arterial lactate reached 6.0 +/- 1.1 mM because the leg lactate output of 8.9 +/- 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 +/- 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.  相似文献   

3.
We evaluated whether the increase in blood lactate with intense exercise is influenced by a low hepatosplanchnic blood flow as assessed by indocyanine green dye elimination and blood sampling from an artery and the hepatic vein in eight men. The hepatosplanchnic blood flow decreased from a resting value of 1.6 +/- 0.1 to 0.7 +/- 0.1 (SE) l/min during exercise. Yet the hepatosplanchnic O2 uptake increased from 67 +/- 3 to 93 +/- 13 ml/min, and the output of glucose increased from 1.1 +/- 0.1 to 2.1 +/- 0.3 mmol/min (P < 0.05). Even at the lowest hepatosplanchnic venous hemoglobin O2 saturation during exercise of 6%, the average concentration of glucose in arterial blood was maintained close to the resting level (5.2 +/- 0.2 vs. 5.5 +/- 0.2 mmol/l), whereas the difference between arterial and hepatic venous blood glucose increased to a maximum of 22 mmol/l. In arterial blood, the concentration of lactate increased from 1.1 +/- 0.2 to 6.0 +/- 1.0 mmol/l, and the hepatosplanchnic uptake of lactate was elevated from 0.4 +/- 0.06 to 1.0 +/- 0.05 mmol/min during exercise (P < 0.05). However, when the hepatosplanchnic venous hemoglobin O2 saturation became low, the arterial and hepatosplanchnic venous blood lactate difference approached zero. Even with a marked reduction in its blood flow, exercise did not challenge the ability of the liver to maintain blood glucose homeostasis. However, it appeared that the contribution of the Cori cycle decreased, and the accumulation of lactate in blood became influenced by the reduced hepatosplanchnic blood flow.  相似文献   

4.
Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L/P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1.0) with a corresponding MCA Vmean of 46.7 +/- 4.5 cm/s. During rhythmic handgrip the increase in MCA Vmean to 51.2 +/- 4.6 cm/s was related to the increased L/P ratio (23.8 +/- 2.5; r2 = 0.79; P < 0.01). Hyperglycemia increased arterial lactate and pyruvate to 1.9 +/- 0.2 mmol/l and 115 +/- 4 micromol/l, respectively, but it did not significantly influence the L/P ratio or MCA Vmean at rest or during exercise. Conversely, MCA Vmean did not correlate significantly, neither to the arterial lactate nor to the pyruvate concentrations. These results support that the arterial plasma L/P ratio modulates cerebral blood flow during cerebral activation independently from the plasma glucose concentration.  相似文献   

5.
Breathing increases abruptly at the start of passive exercise, stimulated by afferent feedback from the moving limbs, and declines toward a steady-state hyperpnea as exercise continues. This decline has been attributed to decreased arterial CO2 levels and adaptation in afferent feedback; however, the relative importance of these two mechanisms is unknown. To address this issue, we compared ventilatory responses to 5 min of passive leg extension exercise performed on 10 awake human subjects (6 men and 4 women) in isocapnic and poikilocapnic conditions. End-tidal Pco2 decreased significantly during poikilocapnic (Delta = -1.5 +/- 0.5 Torr, P < 0.001), but not isocapnic, passive exercise. Despite this difference, the ventilatory responses to passive exercise were not different between the two conditions. Using the fast changes in ventilation at the start (5.46 +/- 0.40 l/min, P < 0.001) and end (3.72 +/- 0.33 l/min, P < 0.001) of passive exercise as measures of the drive to breathe from afferent feedback, we found a decline of 68%. We conclude that the decline in ventilation during passive exercise is due to an adaptation in the afferent feedback from the moving limbs, not a decline in CO2 levels.  相似文献   

6.
The effect of decreased lung volume on ventilatory responses to arteriovenous fistula-induced increased cardiac output was studied in four chronic awake dogs. Lung volume decreases were imposed by application of continuous negative-pressure breathing of -10 cmH2O to the trachea. The animals were surgically prepared with chronic tracheostomy, indwelling carotid artery catheter, and bilateral arteriovenous femoral shunts. Control arteriovenous blood flow was 0.5 l/min, and test flow level was 2.0 l/min. Arterial blood CO2 tension (PaCO2) was continuously monitored using an indwelling Teflon membrane mass spectrometer catheter, and inhaled CO2 was given to maintain isocapnia throughout. Increased fistula flow alone led to a mean 52% increase in cardiac output (CO), whereas mean systemic arterial blood pressure (Psa) fell 4% (P less than 0.01). Negative-pressure breathing alone raised Psa by 3% (P less than 0.005) without a significant change in CO. Expired minute ventilation (VE) increased by 27% (P less than 0.005) from control in both of these conditions separately. Combined increased flow and negative pressure led to a 50% increase in CO and 56% increase in VE (P less than 0.0025) without any significant change in Psa. Effects of decreased lung volume and increased CO appeared to be additive with respect to ventilation and to occur under conditions of constant PaCO2 and Psa. Because both decreased lung volume and increased CO occur during normal exercise, these results suggest that mechanisms other than chemical regulation may play an important role in the control of breathing and contribute new insights into the isocapnic exercise hyperpnea phenomenon.  相似文献   

7.
We investigated the aortic, mixed venous, and great cardiac vein acid-base changes in eight domestic pigs during cardiac arrest produced by ventricular fibrillation and during cardiopulmonary resuscitation (CPR). The great cardiac vein PCO2 increased from a control value of 52 +/- 2 to 132 +/- 28 (SD) Torr during CPR, whereas the arterial PCO2 was unchanged (39 +/- 4 vs. 38 +/- 4). The coronary venoarterial PCO2 gradient, therefore, increased remarkably from 13 +/- 2 to 94 +/- 29 Torr. The simultaneously measured great cardiac vein lactate concentrations increased from 0.24 +/- 0.06 to 7.3 +/- 2.34 mmol/l. Much more moderate increases in the lactate content of aortic blood from 0.64 +/- 0.25 to 2.56 +/- 0.27 mmol/l were observed. Increases in great cardiac vein PCO2 and lactate were highly correlated during CPR (r = 0.91). After successful CPR, the coronary venoarterial PCO2 gradient returned to normal levels within 2 min after restoration of spontaneous circulation. Lactate content was rapidly reduced and lactate extraction was reestablished within 30 min after CPR. These studies demonstrate marked but reversible acidosis predominantly as the result of myocardial CO2 production during CPR.  相似文献   

8.
The diversion of systemic venous blood into the arterial circulation in patients with intracardiac right-to-left shunts represents a pathophysiological condition in which there are alterations in some of the potential stimuli for the exercise hyperpnea. We therefore studied 18 adult patients with congenital (16) or noncongenital (2) right-to-left shunts and a group of normal control subjects during constant work rate and progressive work rate exercise to assess the effects of these alterations on the dynamics of exercise ventilation and gas exchange. Minute ventilation (VE) was significantly higher in the patients than in the controls, both at rest (10.7 +/- 2.4 vs. 7.5 +/- 1.2 l/min, respectively) and during constant-load exercise (24.9 +/- 4.8 vs. 12.7 +/- 2.61 l/min, respectively). When beginning constant work rate exercise from rest, the ventilatory response of the patients followed a pattern that was distinct from that of the normal subjects. At the onset of exercise, the patients' end-tidal PCO2 decreased, end-tidal PO2 increased, and gas exchange ratio increased, indicating that pulmonary blood was hyperventilated relative to the resting state. However, arterial blood gases, in six patients in which they were measured, revealed that despite the large VE response to exercise, arterial pH and PCO2 were not significantly different from resting values when sampled during the first 2 min of moderate-intensity exercise. Arterial PCO2 changed by an average of only 1.4 Torr after 4.5-6 min of exercise. Thus the exercise-induced alveolar and pulmonary capillary hypocapnia was of an appropriate degree to compensate for the shunting of CO2-rich venous blood into the systemic arterial circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To test the hypothesis that in chronic obstructive pulmonary disease (COPD) patients the ventilatory and metabolic requirements during cycling and walking exercise are different, paralleling the level of breathlessness, we studied nine patients with moderate to severe, stable COPD. Each subject underwent two exercise protocols: a 1-min incremental cycle ergometer exercise (C) and a "shuttle" walking test (W). Oxygen uptake (VO(2)), CO(2) output (VCO(2)), minute ventilation (VE), and heart rate (HR) were measured with a portable telemetric system. Venous blood lactates were monitored. Measurements of arterial blood gases and pH were obtained in seven patients. Physiological dead space-tidal volume ratio (VD/VT) was computed. At peak exercise, W vs. C VO(2), VE, and HR values were similar, whereas VCO(2) (848 +/- 69 vs. 1,225 +/- 45 ml/min; P < 0. 001) and lactate (1.5 +/- 0.2 vs. 4.1 +/- 0.2 meq/l; P < 0.001) were lower, DeltaVE/DeltaVCO(2) (35.7 +/- 1.7 vs. 25.9 +/- 1.3; P < 0. 001) and DeltaHR/DeltaVO(2) values (51 +/- 3 vs. 40 +/- 4; P < 0.05) were significantly higher. Analyses of arterial blood gases at peak exercise revealed higher VD/VT and lower arterial partial pressure of oxygen values for W compared with C. In COPD, reduced walking capacity is associated with an excessively high ventilatory demand. Decreased pulmonary gas exchange efficiency and arterial hypoxemia are likely to be responsible for the observed findings.  相似文献   

10.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

11.
The effect of carbonic anhydrase (CA) inhibition with acetazolamide (Acz, 10 mg/kg body wt iv) on exercise performance and the ventilatory (VET) and lactate (LaT) thresholds was studied in seven men during ramp exercise (25 W/min) to exhaustion. Breath-by-breath measurements of gas exchange were obtained. Arterialized venous blood was sampled from a dorsal hand vein and analyzed for plasma pH, PCO(2), and lactate concentration ([La(-)](pl)). VET [expressed as O(2) uptake (VO(2)), ml/min] was determined using the V-slope method. LaT (expressed as VO(2), ml/min) was determined from the work rate (WR) at which [La(-)](pl) increased 1.0 mM above rest levels. Peak WR was higher in control (Con) than in Acz sutdies [339 +/- 14 vs. 315 +/- 14 (SE) W]. Submaximal exercise VO(2) was similar in Acz and Con; the lower VO(2) at exhaustion in Acz than in Con (3.824 +/- 0. 150 vs. 4.283 +/- 0.148 l/min) was appropriate for the lower WR. CO(2) output (VCO(2)) was lower in Acz than in Con at exercise intensities >/=125 W and at exhaustion (4.375 +/- 0.158 vs. 5.235 +/- 0.148 l/min). [La(-)](pl) was lower in Acz than in Con during submaximal exercise >/=150 W and at exhaustion (7.5 +/- 1.1 vs. 11.5 +/- 1.1 mmol/l). VET was similar in Acz and Con (2.483 +/- 0.086 and 2.362 +/- 0.110 l/min, respectively), whereas the LaT occurred at a higher VO(2) in Acz than in Con (2.738 +/- 0.223 vs. 2.190 +/- 0.235 l/min). CA inhibition with Acz is associated with impaired elimination of CO(2) during the non-steady-state condition of ramp exercise. The similarity in VET in Con and Acz suggests that La(-) production is similar between conditions but La(-) appearance in plasma is reduced and/or La(-) uptake by other tissues is enhanced after the Acz treatment.  相似文献   

12.
Factors contributing to maximal incremental and short-term exercise capacity were measured before and after 12 wk of high-intensity endurance training in 12 old (60-70 yr) and 10 young (20-30 yr) sedentary healthy males. Peak O2 uptake in incremental cycle ergometer exercise increased from 1.60 +/- 0.073 to 2.21 +/- 0.073 (SE) l/min (38% increase) in the old subjects and from 2.54 +/- 0.141 to 3.26 +/- 0.181 l/min (29%) in the young subjects. Peak cardiac output, estimated by extrapolation from a series of submaximal measurements by the CO2 rebreathing method, increased by 30% (from 12.7 to 16.5 l/min) in the old subjects, associated with a 6% increase (from 126 to 135 ml/l) in arteriovenous O2 difference; in the young subjects there were equal 14% increases in both variables (18.0 to 20.5 l/min and 140 to 159 ml/l, respectively). Submaximal mean arterial pressure and cardiac output were lower posttraining in the old subjects; total vascular conductance and cardiac stroke volume increased. Although peak power at the start of a short-term maximal isokinetic test did not change, total work accomplished in 30 s at a pedaling frequency of 110 revolutions/min increased in both groups, from 11.2 to 12.6 kJ and from 15.7 to 16.9 kJ in the old and young, respectively; fatigue during the 30-s test was less, and postexercise plasma lactate concentrations were lower. In older subjects, increases in aerobic power after high-intensity endurance training are at least as large as in younger subjects and are associated with increases in vascular conductance, maximal cardiac output, and stroke volume.  相似文献   

13.
We evaluated whether a reduction in cardiac output during dynamic exercise results in vasoconstriction of active skeletal muscle vasculature. Nine subjects performed four 8-min bouts of cycling exercise at 71 +/- 12 to 145 +/- 13 W (40-84% maximal oxygen uptake). Exercise was repeated after cardioselective (beta 1) adrenergic blockade (0.2 mg/kg metoprolol iv). Leg blood flow and cardiac output were determined with bolus injections of indocyanine green. Femoral arterial and venous pressures were monitored for measurement of heart rate, mean arterial pressure, and calculation of systemic and leg vascular conductance. Leg norepinephrine spillover was used as an index of regional sympathetic activity. During control, the highest heart rate and cardiac output were 171 +/- 3 beats/min and 18.9 +/- 0.9 l/min, respectively. beta 1-Blockade reduced these values to 147 +/- 6 beats/min and 15.3 +/- 0.9 l/min, respectively (P < 0.001). Mean arterial pressure was lower than control during light exercise with beta 1-blockade but did not differ from control with greater exercise intensities. At the highest work rate in the control condition, leg blood flow and vascular conductance were 5.4 +/- 0.3 l/min and 5.2 +/- 0.3 cl.min-1.mmHg-1, respectively, and were reduced during beta 1-blockade to 4.8 +/- 0.4 l/min (P < 0.01) and 4.6 +/- 0.4 cl.min-1.mmHg-1 (P < 0.05). During the same exercise condition leg norepinephrine spillover increased from a control value of 2.64 +/- 1.16 to 5.62 +/- 2.13 nM/min with beta 1-blockade (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Physiological responses to prolonged exercise in ultramarathon athletes   总被引:3,自引:0,他引:3  
The physiological responses of 10 ultramarathon athletes to prolonged exercise at the highest intensity level they could sustain for 4 h have been examined. Energy expenditure for the 4 h of exercise was 14,146 +/- 1,789 kJ, of which 63% was provided by the oxidation of fat. Plasma free fatty acids rose, but the changes in blood lactate concentration (delta 0.2 mmol/l) and exchange ratio (delta 0.05) were small, and the postexercise glycogen content (130 +/- 42 mumol/g) of the vastus lateralis muscles was estimated to be 37-53% of normal resting values. During exercise O2 intake (VO2) increased with time from the 50th to 240th min, the rise becoming significant (P less than 0.01) after 110 min of work. The change in VO2 was equivalent to a rise in relative intensity (%VO2max) of +9.1% and a change of speed of 1.49 km/h. A rise in cardiac frequency compensated for a fall in stroke volume (SV), so that cardiac output was maintained, and the increases in rectal temperature (Tre) (delta 0.63 degree C) and sweat loss (3.49 +/- 0.50 kg, equivalent to 5.5% of body wt) and the decreased mean skin temperature (Tsk) (-1.22 degree C) were within tolerable limits during exercise. Following exercise there was a loss (-25%) of ability to generate voluntary force of the quadriceps femoris, though electrically evoked mechanical properties of the muscle remained unchanged. The results suggest that neither thermal nor cardiovascular factors are limiting to prolonged (4 h) exercise, although the ability to utilize fat as a fuel may be important in ultradistance athletes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Studies were performed to determine the effects of aging on the ventilatory responsiveness to two known respiratory stimulants, inhaled CO2 and exercise. Although explanation of the physiological mechanisms underlying development of exercise hyperpnea remains elusive, there is much circumstantial evidence that during exercise, however mediated, ventilation is coupled to CO2 production. Thus matched groups of young and elderly subjects were studied to determine the relationship between increasing ventilation and increasing CO2 production (VCO2) during steady-state exercise and the change in their minute ventilation in response to progressive hypercapnia during CO2 rebreathing. We found that the slope of the ventilatory response to hypercapnia was depressed in elderly subjects when compared with the younger control group (delta VE/delta PCO2 = 1.64 +/- 0.21 vs. 2.44 +/- 0.40 l X min-1 X mmHg-1, means +/- SE, respectively). In contrast, the slope of the relationship between ventilation and CO2 production during exercise in the elderly was greater than that of younger subjects (delta VE/delta VCO2 = 29.7 +/- 1.19 vs. 25.3 +/- 1.54, means +/- SE, respectively), as was minute ventilation at a single work load (50 W) (32.4 +/- 2.3 vs. 25.7 +/- 1.54 l/min, means +/- SE, respectively). This increased ventilation during exercise in the elderly was not produced by arterial O2 desaturation, and increased anaerobiasis did not play a role. Instead, the increased ventilation during exercise seems to compensate for increased inefficiency of gas exchange such that exercise remains essentially isocapnic. In conclusion, in the elderly the ventilatory response to hypercapnia is less than in young subjects, whereas the ventilatory response to exercise is greater.  相似文献   

16.
Effect of methylene blue on cardiac output response to exercise in dogs   总被引:1,自引:0,他引:1  
To determine whether the increase in cardiac output during mild to moderate exercise is related to an increase in the tissue redox potential, we compared the responses of cardiac output, total body oxygen consumption, and arterial blood lactate-to-pyruvate ratio (a measure of NADH/NAD) to treadmill exercise between dogs treated with normal saline and those treated with a hydrogen acceptor, new methylene blue. Normal saline was infused into the left atrium in the first group of dogs at a rate of 0.38 ml/min throughout the treadmill exercise (2.5 mph and 5.0 mph on a 6% incline, each for 20 min). In the second group, methylene blue was administered as a loading dose (4 mg/kg) before exercise, followed by a continuous infusion (0.15 mg X kg-1 X min-1) throughout exercise. A similar infusion of methylene blue was given to a third group of dogs without exercise; it reduced the arterial lactate-to-pyruvate ratio from 6.70 +/- 0.35 to 4.12 +/- 0.27 but had no or little effects on cardiac output, heart rate, arterial pressure, and left ventricular dP/dt and (dP/dt)/P. Treadmill exercise doubled cardiac output and increased total body O2 consumption three- to fourfold in the first two groups but increased arterial blood lactate-to-pyruvate ratio only in group 1 (6.0 +/- 0.54 to 9.97 +/- 0.91). The relationship between cardiac output and total body O2 consumption was unaffected by the simultaneous administration of methylene blue during exercise. Groups 1 and 2 also did not differ in their heart rate, left ventricular dP/dt and (dP/dt)/P, and plasma catecholamine responses to exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

18.
To study the distribution of blood flow after blood volume expansion, seven miniature swine ran at high speed (17.6-20 km/h, estimated to require 115% of maximal O2 uptake) on a motor-driven treadmill on two occasions: once during normovolemia and once after an acute 15% blood volume expansion (homologous whole blood). O2 uptake, cardiac output, heart rate, mean arterial pressure, and distribution of blood flow (with radiolabeled microspheres) were measured at the same time during each of the exercise bouts. Maximal heart rate was identical between conditions (mean 266); mean arterial pressure was elevated during the hypovolemic exercise (149 +/- 5 vs. 137 +/- 6 mmHg). Although cardiac output was higher and arterial O2 saturation was maintained during the hypervolemic condition (10.5 +/- 0.7 vs. 9.3 +/- 0.6 l/min), O2 uptake was not different (1.74 +/- 0.08 vs. 1.74 +/- 0.09 l/min). Mean blood flows to cardiac (+12.9%), locomotory (+9.8%), and respiratory (+7.5%) muscles were all elevated during hypervolemic exercise, while visceral and brain blood flows were unchanged. Calculated resistances to flow in skeletal and cardiac muscle were not different between conditions. Under the experimental conditions of this study, O2 uptake in the miniature swine was limited at the level of the muscles during hypervolemic exercise. The results also indicate that neither intrinsic contractile properties of the heart nor coronary blood flow limits myocardial performance during normovolemic exercise, because both the pumping capacity of the heart and the coronary blood flow were elevated in the hypervolemic condition.  相似文献   

19.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

20.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号