首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To evaluate the quantity of Spirulina cultured in seawater, salt-tolerant strains were screened out and their growth and antioxidant accumulation were studied in different salt concentrations

Results

Salt tolerance of five Spirulina strains were investigated with modified Zarrouk medium (with 200–800 mM NaCl). All strains grew well with 400 mM NaCl; their growth rates were almost same as in the control medium. Spirulina strains FACHB-843 (SP843) and FACHB-972 (SP972) had the highest salt tolerance their growth rates in 600 mM NaCl were nearly same as the control. Both strains produced more carotene, phycocyanin, polysaccharides, proline and betaine in 400–600 mM NaCl than the control. Salt stress also induced them to produce higher activities of superoxide dismutase and peroxidase. Total antioxidant capacities of SP843 and SP972 peaked at 600 and 400 mM NaCl, respectively.

Conclusion

Spirulina strains cultured with seawater accumulate more bioactive substances and will have a higher nutritive value.
  相似文献   

2.

Background

The Candida parapsilosis complex species has emerged as an important cause of human disease. The molecular identification of C. parapsilosis isolates at the species level can be helpful for epidemiological studies and then for the establishment of appropriate therapies and prophylactic measures.

Methods

The present study was undertaken to analyze 13 short tandem repeat (STR) markers (7 minisatellites and 6 microsatellites) in a global set of 182 C. parapsilosis complex isolates from different origins including invasive and superficial clinical sites.

Results

Upon the analysis of 182 strains of C. parapsilosis complex species, 10–17 haplotypes were detected for each minisatellite marker. The combination of 7 minisatellite markers yielded 121 different genotypes with a 0.995 D value. Upon the analysis of 114 isolates (68 from invasive infections and 46 from superficial infections), 21–32 genotypes were detected for each microsatellite marker. The combination of all 13 markers yielded 96 different genotypes among 114 isolates with a high degree of discrimination (0.997 D value).The same multilocus genotype was shared by isolates recovered from some patients and from the hand of theirs correspondent healthcare worker. For another patient, the same multilocus genotype of C. metapsilosis was detected in blood and skin confirming that candidemia usually arises as an endogenous infection following prior colonization.

Conclusions

These STR markers are a valuable tool for the differentiation of C. parapsilosis complex strains, to support epidemiological investigations especially studies of strain relatedness and pathways of transmission.
  相似文献   

3.

Background  

Macrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az) is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F.) tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A) may have different susceptibilities to Az, a widely used and well-tolerated antibiotic.  相似文献   

4.

Background  

Differences in levels of gene expression among individuals are an important source of phenotypic variation within populations. Recent microarray studies have revealed that expression variation is abundant in many species, including Drosophila melanogaster. However, previous expression surveys in this species generally focused on a small number of laboratory strains established from derived populations. Thus, these studies were not ideal for population genetic analyses.  相似文献   

5.

Purpose of Review

The purpose of this review is to give an overview of recent findings on antifungal resistance in Aspergillus fumigatus (the major causative agent of aspergillosis) and sibling Aspergillus species, which can be hidden agents of aspergillosis.

Recent Findings

Azole resistance by Cyp51A mutation in A. fumigatus is a growing problem worldwide. The resistance can occur in patients or in the environment. The former occurs by drug selection in the host, inducing mutations in Cyp51A. The latter is characterized by a tandem repeat in the promoter region of cyp51A gene and mutation(s) in Cyp51A. Environmental resistant strains are prevailing rapidly and globally. Moreover, efflux pump and biofilm formation are closely related with antifungal resistance of A. fumigatus. Finally, sibling species of Aspergillus are described with regard to antifungal resistance.

Summary

Environmental azole-resistant strains have newly emerged and been dispersed globally, and continuous survey and countermeasures are urgently needed against these strains. Although the contributions of Cyp51A and efflux pumps to antifungal resistance are becoming clear, other resistance mechanisms remain unclear. Further investigations including genome comparisons will help to clarify the novel resistant mechanisms and to develop countermeasures or novel antifungal drugs against resistant strains of A. fumigatus and other Aspergillus species that have low susceptibility to antifungal therapeutics.
  相似文献   

6.

Purpose of Study

To review the literature on heteroresistance to fluconazole (FLC) and investigate the level of heteroresistance to FLC (LHF), we analyzed 100 clinical and environmental Brazilian Cryptococcus strains.

Recent Findings

Heteroresistance is a phenomenon described as the emergence of resistant subpopulation cells within a single susceptible strain that can tolerate higher concentrations of fluconazole above the minimal inhibitory concentration (MIC) level.

Summary

We found lower FLC-MICs (0.12–64 mg/L) than LHF (8–128 mg/L). Highly heteroresistant adapted subpopulations (256 mg/L) was found in minority (9%) strains, but importantly, 33% showed low FLC-MIC (8 mg/L). We concluded for similar LHF in both species, but higher LHF in clinical strains in comparison to environmental ones. Our findings stressed that the LHF is not correlated to species and pretty is strain-dependent and alert about high heteroresistant subpopulations that hardly reverts to the original LHF even upon the removal of drug pressure.
  相似文献   

7.

Background

The spread of MRSA strains at hospitals as well as in the community are of great concern worldwide. We characterized the MRSA clones isolated at Tunisian hospitals and in the community by comparing them to those isolated in other countries.

Results

We characterized 69 MRSA strains isolated from two Tunisian university hospitals between the years 2004-2008. Twenty-two of 28 (79%) community-associated MRSA (CA-MRSA) strains and 21 of 41 (51%) healthcare-associated MRSA (HA-MRSA) strains were PVL-positive. The PVL-positive strains belonged to predicted founder group (FG) 80 in MLST and carried either type IVc SCCmec or nontypeable SCCmec that harbours the class B mec gene complex. In contrast, very diverse clones were identified in PVL-negative strains: three FGs (5, 15, and 22) for HA-MRSA strains and four FGs (5, 15, 45, and 80) for CA-MRSA strains; and these strains carried the SCCmec element of either type I, III, IVc or was nontypeable. The nucleotide sequencing of phi7401PVL lysogenized in a CA-MRSA strain JCSC7401, revealed that the phage was highly homologous to phiSA2mw, with nucleotide identities of more than 95%. Furthermore, all PVL positive strains were found to carry the same PVL phage, since these strains were positive in two PCR studies, identifying gene linkage between lukS and mtp (major tail protein) and the lysogeny region, both of which are in common with phi7401PVL and phiSa2mw.

Conclusions

Our experiments suggest that FG80 S. aureus strains have changed to be more virulent by acquiring phi7401PVL, and to be resistant to β-lactams by acquiring SCCmec elements. These novel clones might have disseminated in the Tunisian community as well as at the Tunisian hospitals by taking over existing MRSA clones.
  相似文献   

8.

Background and Aims

In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity.

Methods

Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant''s responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose–response curve for each species. Dose–response curves were then compared between tested species.

Key Results

The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose–response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested.

Conclusions

This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.Key words: Mechanosensing, interspecific variability, trees, lianas, rain forest, neotropical species, bending, biomechanics, Bauhinia, Eperua, Symphonia, Tachigali  相似文献   

9.

Background

Nodulisporic acids (NAs) are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species.

Methods and Results

Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism.

Conclusions and Significance

Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a fungal organism, whether from environmental sequences, vegetative mycelia or field specimens, resulting in holistic species concepts critical to the assessment of the dimensions of fungal diversity.  相似文献   

10.

Background

Organophosphate and carbamate insecticides irreversibly inhibit acetylcholinesterase causing death of insects. Resistance-modified acetylcholinesterases(AChEs) have been described in many insect species and sequencing of their genes allowed several point mutations to be described. However, their relative frequency and their cartography had not yet been addressed.

Results

To analyze the most frequent mutations providing insecticide resistance in Drosophila melanogaster acetylcholinesterase, the Ace gene was cloned and sequenced in several strains harvested from different parts of the world. Sequence comparison revealed four widespread mutations, I161V, G265A, F330Y and G368A. We confirm here that mutations are found either isolated or in combination in the same protein and we show that most natural populations are heterogeneous, composed of a mixture of different alleles. In vitro expression of mutated proteins showed that combining mutations in the same protein has two consequences: it increases resistance level and provides a wide spectrum of resistance.

Conclusion

The presence of several alleles in natural populations, offering various resistance to carbamate and organophosphate compounds will complicate the establishment of resistance management programs.
  相似文献   

11.

Background and aims

Bradyrhizobium japonicum and Bradyrhizobium elkanii dominated soybean nodules in temperate and subtropical regions in Nepal, respectively, in our previous study. The aims of this study were to reveal the effects of temperature on the nodulation dominancy of B. japonicum and B. elkanii and to clarify the relationship between the effects of temperature and the climate-dependent distribution of Bradyrhizobium species.

Methods

A laboratory competition experiment was conducted between B. japonicum and B. elkanii strains isolated from the same temperate location in Nepal. A mixture of each strain was inoculated into sterilized vermiculite with or without soybean seeds, and inoculated samples were incubated at 33/27 (day/night) and 23/17 °C. Relative populations in the non-rhizosphere, rhizosphere, and nodules were determined by competitive PCR using specific primers for each strain at 0, 1, 2, and 4 weeks after inoculation.

Results

Both separately inoculated B. japonicum and B. elkanii strains formed nodules at both temperatures. Under competitive conditions, B. japonicum strains dominated at low temperature; however, at high temperature, both strains achieved co-nodulation in 1 week, with B. elkanii dominating after 2 weeks. The relative populations of both strains were similar in the non-rhizosphere and rhizosphere at low temperature, but B. elkanii strains dominated in these regions at high temperature.

Conclusions

The domination of B. japonicum strains in nodules at the low temperature appeared to be due to preferential infection, while the domination of B. elkanii strains at high temperature appeared to be due to the higher population of B. elkanii in the non-rhizosphere and rhizosphere, in addition to its domination in nodules after co-nodulation. The effects of temperature on the competition between B. japonicum and B. elkanii strains were remarkable and corresponded with the distribution of bradyrhizobial species in Nepal.
  相似文献   

12.

Background

Zero-valent iron nanoparticles (ZVI NPs) have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown.

Results

In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407) but not against two gram-negative strains (Escherichia coli K12 and ATCC11634). Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI) staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm) concentration of ZVI NPs.

Conclusion

Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.
  相似文献   

13.

Background  

Enteroaggregative Escherichia coli (EAEC) are enteropathogenic strains identified by the aggregative adhesion (AA) pattern that share the capability to form biofilms. Citrobacter freundii is classically considered as an indigenous intestinal species that is sporadically associated with diarrhea.  相似文献   

14.

Background  

Aeromonas spp. have been regarded as "emerging pathogens". Aeromonads possess multifactorial virulence and the production of many of these virulence determinants is associated with high cell density, a phenomenon that might be regulated by quorum sensing. However, only two species of the genus are reported to possess the luxRI quorum sensing gene homologs. The purpose of this study was to investigate if the luxRI homologs are universally present in the Aeromonas strains collected from various culture collections, clinical laboratories and field studies.  相似文献   

15.

Background  

It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species.  相似文献   

16.

Background  

Burkholderia species exhibit enormous phenotypic diversity, ranging from the nonpathogenic, soil- and water-inhabiting Burkholderia thailandensis to the virulent, host-adapted mammalian pathogen B. mallei. Genomic diversity is evident within Burkholderia species as well. Individual isolates of Burkholderia pseudomallei and B. thailandensis, for example, carry a variety of strain-specific genomic islands (GIs), including putative pathogenicity and metabolic islands, prophage-like islands, and prophages. These GIs may provide some strains with a competitive advantage in the environment and/or in the host relative to other strains.  相似文献   

17.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

18.

Background

Pentavalent antimonials have been the first line treatment for dermal leishmaniasis in Colombia for over 30 years. Miltefosine is administered as second line treatment since 2005. The susceptibility of circulating populations of Leishmania to these drugs is unknown despite clinical evidence supporting the emergence of resistance.

Methodology/Principal Findings

In vitro susceptibility was determined for intracellular amastigotes of 245 clinical strains of the most prevalent Leishmania Viannia species in Colombia to miltefosine (HePC) and/or meglumine antimoniate (SbV); 163, (80%) were evaluated for both drugs. Additionally, susceptibility to SbV was examined in two cohorts of 85 L. V. panamensis strains isolated between 1980–1989 and 2000–2009 in the municipality of Tumaco. Susceptibility to each drug differed among strains of the same species and between species. Whereas 68% of L. V. braziliensis strains presented in vitro resistance to HePC, 69% were sensitive to SbV. Resistance to HePC and SbV occurred respectively, in 20% y 21% of L. panamensis strains. Only 3% of L. V. guyanensis were resistant to HePC, and none to SbV. Drug susceptibility differed between geographic regions and time periods. Subpopulations having disparate susceptibility to SbV were discerned among L. V. panamensis strains isolated during 1980–1990 in Tumaco where resistant strains belonged to zymodeme 2.3, and sensitive strains to zymodeme 2.2.

Conclusions/Significance

Large scale evaluation of clinical strains of Leishmania Viannia species demonstrated species, population, geographic, and epidemiologic differences in susceptibility to meglumine antimoniate and miltefosine, and provided baseline information for monitoring susceptibility to these drugs. Sensitive and resistant clinical strains within each species, and zymodeme as a proxy marker of antimony susceptibility for L. V. panamensis, will be useful in deciphering factors involved in susceptibility and the distribution of sensitive and resistant populations.  相似文献   

19.
《PloS one》2009,4(7)

Background

Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood.

Methodology/Principal Findings

The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, ∼40% of the ∼2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three ∼90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors.

Conclusions/Significance

The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance.  相似文献   

20.

Background

The λ Red recombineering technology has been used extensively in Escherichia coli and Salmonella typhimurium for easy PCR-mediated generation of deletion mutants, but less so in pathogenic species of E. coli such as EHEC and EPEC. Our early experiments with the use of λ Red in EHEC and EPEC have led to sporadic results, leading to the present study to identify factors that might improve the efficiency of Red recombineering in these pathogenic strains of E. coli.

Results

In this report, we have identified conditions that optimize the use of λ Red for recombineering in EHEC and EPEC. Using plasmids that contain a Ptac-red-gam operon and a temperature-sensitive origin of replication, we have generated multiple mutations (both marked and unmarked) in known virulence genes. In addition, we have easily deleted five O157-specific islands (O-islands) of EHEC suspected of containing virulence factors. We have examined the use of both PCR-generated substrates (40 bp of flanking homology) and plasmid-derived substrates (~1 kb of flanking homology); both work well and each have their own advantages. The establishment of the hyper-rec phenotype requires only a 20 minute IPTG induction period of red and gam. This recombinogenic window is important as constitutive expression of red and gam induces a 10-fold increase in spontaneous resistance to rifampicin. Other factors such as the orientation of the drug marker in recombination substrates and heat shock effects also play roles in the success of Red-mediated recombination in EHEC and EPEC.

Conclusions

The λ Red recombineering technology has been optimized for use in pathogenic species of E. coli, namely EHEC and EPEC. As demonstration of this technology, five O-islands of EHEC were easily and precisely deleted from the chromosome by electroporation with PCR-generated substrates containing drug markers flanked with 40 bp of target DNA. These results should encourage the use of λ Red recombineering in these and other strains of pathogenic bacteria for faster identification of virulence factors and the speedy generation of bacterial mutants for vaccine development.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号