首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of fasting for 24 h and 48 h on D-3-hydroxybutyrate utilization and acetoacetate, L-lactate and pyruvate production by the isolated non-working perfused rat heart were investigated over a wide range of DL-3-HB concentrations. D-3-HB utilization is concentration dependent and shows saturation kinetics, D-3-HB oxidation is correlated with D-3-HB concentration. Acetoacetate production is proportional to DL-3-HB concentration. L-lactate production is proportional to DL-3-HB concentration up to 5 mM following a 24h fast and up to 10 mM after a 48h fast, but further increase in DL-3-HB concentration decreases the rate of lactate production. Fasting enhances D-3-HB utilization at 16 mM DL-3-HB by 16% and 25% in 24 h and 48 h fast respectively, but has no significant effect at lower concentration. Fasting has no effect on acetoacetate production. Fasting for 48 h doubled the half-saturation concentration (Ku) without significant change in the maximum rate of utilization (Vu) of D-3-HB.  相似文献   

2.
In this study the effects of propionate, L-valine, L-isoleucine, and DL-methionine on the metabolism of D-3-hydroxybutyrate (D-3-HB) were investigated in the isolated perfused non-working rat heart.Propionate inhibited the utilization (the total removal of D-3-HB by the heart) but stimulated the oxidation of D-3-HB. The degree of D-3-HB inhibition was dependent on the concentrations of propionate and D-3-HB. Furthermore, increasing the concentration of DL-hydroxybutyrate (DL-3-HB) to 16 or 30 mM abolished the inhibitory effect of propionate (4 mM). Whereas increasing the perfusion pressure from 40ndash;80 mmHg stimulated the utilization and the oxidation of D-3-HB; propionate (4 mM) severely inhibited the utilization of D-3-HB at 40 and 80 mmHg, when DL-3-HB was 5 mM. On the other hand insulin (2 mU .ml-1) stimulated the utilization and the oxidation of D-3-HB at perfusion pressure of 40 mmHg, but showed no effect at 80 mmHg. Insulin was unable to overcome the inhibitory effect of propionate. Propionate improved the oxidation but inhibited the utilization of D-3-HB, while L-valine and L-isoleucine showed no effects on the utilization and the oxidation of D-3-HB. DL-methionine inc d the utilization of D-3-HB by 14% without noticeable effects on the oxidation of D-3-HB. None of these anaplerotic substrates were suitable to ameliorate the utilization of D-3-HB.  相似文献   

3.
Summary The utilization of D-3-HB and the production of acetoacetate by the perfused rat heart were investigated over a wide range of DL-3-HB concentrations. The rate of D-3-HB utilization is concentration dependent, and shows saturation kinetics. The oxidized amount of D-3-HB when D-3-HB as a sole substrate, accounts at a maximum for 50% of the total oxygen consumption, which suggest the contribution of the endogenous substrate as fuel source along with D-3-HB. The proportion of the D-3-HB consumed that is oxidized rather than released as acetoacetate increases from 70% to 93% as the concentration of D-3-HB falls from 6.99 mM to 0.30 mM.  相似文献   

4.
Ketone bodies promote insulin secretion from isolated rat pancreatic islets in the presence of 5 mM-glucose, but are ineffective in its absence. At concentrations of 10 mM or less, the relative abilities of the ketone bodies to potentiate release are in the order D-3-hydroxybutyrate greater than DL-3-hydroxybutyrate greater than acetoacetate. The response curve relating insulin release to D-3-hydroxybutyrate concentration displays a threshold at 1 mM and a maximum at 10 mM. D-3-Hydroxybutyrate (5 mM, but not 10 mM) promotes insulin secretion in the presence of 5 mM concentrations of both L-arginine and DL-glyceraldehyde, but not with L-leucine, L-alanine, L-glutamate or 4-methyl-2-oxopentanoate. The oxidation rates of the exogenous ketone bodies do not correlate well with their capacities to promote insulin release. Moreover, the oxidation of 5 mM-D-3-hydroxybutyrate can be inhibited by 25% with methylmalonate (10 mM) without any diminution of release. The potentiation with D-3-hydroxybutyrate occurs without an observable increase in total islet cyclic AMP. However, a small net efflux matches the relative abilities of the ketone bodies to promote insulin release. With islets from 48 h-starved animals the insulin response is both diminished and less sensitive than in fed animals, since insulin secretion is not significantly raised until a threshold of 5 mM-D-3-hydroxybutyrate is reached. These results suggest that, in the rat at least, there should be a reappraisal of the physiological role of ketone bodies in the promotion of insulin release.  相似文献   

5.
1. Diaphragms from 48h-starved rats were incubated in Krebs-Ringer bicarbonate medium at 37degreesC for 30min and then transferred into new medium and incubated for 1, 2 and 3 h. 2. The amount of free amino acids found at the end of each time of incubation was larger than the amount at the beginning of incubation, indicating that in this system proteolysis is prevailing. 3. The diaphragms was releasing mainly alanine and glutamine into the incubation medium. 4. Within the periods of incubation the release and metabolism of free amino acids was proceeding at a constant rate. 5. Addition of sodium DL-3-hydroxybutyrate decreased the tissue content of several amino acids, among which were tyrosine and phenylalanine, suggesting that proteolysis was decreased by ketone bodies. 6. In the presence of glucose (10mM) and branched-chain amino acids (0.5mM), sodium DL-3-hydroxybutyrate at concentrations of 4 or 6 mM resulted in 30% decrease in tissue alanine content and a 20% decline in alanine release. Release of taurine and glutamine was decreased by 19 and 16% respectively with 6 mM-sodium DL-3-hydroxybutyrate. Addition of sodium acetoacetate (1-3mM) also resulted in a 20-35% decrease in tissue content of alanine, glutamine and taurine and in a 15-24% decrease of alanine and glutamine release. Smaller decreases (less than 15%) in the release of glycine, threonine, proline, serine and aspartate were also observed in the presence of sodium DL-3-hydroxybutyrate or sodium acetoacetate. 7. Substitution of pyruvate (1.0mM) for glucose in the presence of acetoacetate restored alanine and glutamine production to control values. In the presence of acetoacetate, pyruvate also increased the tissue content of aspartate by 77% and decreased the tissue content of glutamate by 30%. 8. It is suggested that in diaphragms from starved rats, ketone bodies (a) in the absence of other substrates inhibit protein catabolism and (b) in the presence of glucose and branched-chain amino acids decrease alanine and glutamine production, by inhibiting glycolysis.  相似文献   

6.
This study determined whether exercise training in rats would prevent the accumulation of lipids and depressed glucose utilization found in hearts from diabetic rats. Diabetes was induced by intravenous streptozotocin (60 mg/kg). Trained diabetic rats were run on a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk. Training of diabetic rats had no effect on glycemic control but decreased plasma lipids. In vivo myocardial long-chain acylcarnitine, acyl-CoA, and high-energy phosphate levels were similar in sedentary control, sedentary diabetic, and trained diabetic groups. The levels of myocardial triacylglycerol were similar in sedentary control and diabetic rats but decreased in trained diabetic rats. Hearts were perfused with buffer containing diabetic concentrations of glucose (22 mM) and palmitate (1.2 mM). D-[U-14C] glucose oxidation rates (14CO2 production) were depressed in hearts from sedentary diabetic rats relative to sedentary control rats. Hearts from trained diabetic rats exhibited increased glucose oxidation relative to those of sedentary diabetic rats, but this improvement was below that of the sedentary control rats. [9,10(-3)H]palmitate oxidation rates (3H2O production) were identical in all three groups. These findings suggest that exercise training resulted in a partial normalization of myocardial glucose utilization in diabetic rats.  相似文献   

7.
Tumors of peripheral tissues contain low levels of succinyl CoA-acetoacetate CoA transferase activity which is not induced in vitro by prolonged cultivation in 2.5 mM DL-3-hydroxybutyrate. Although this enzyme is considered to be the main agent controlling the extent to which ketone bodies serve as metabolic substrates such tumors metabolize D(-)-3-hydroxy[3(14)C]butyrate to 14CO2. Also addition of 3-hydroxybutyrate and/or acetoacetate reduces the amount of 14CO2 produced from D-[U-14C] glucose suggesting a common metabolic intermediate. These observations can be accounted for by the presence of acetoacetyl-CoA synthetase, an enzyme which is able to synthesize acetoacetyl-CoA directly from acetoacetate, ATP and coenzyme A. This is the first demonstration of this enzyme in tumor tissue. The rate of metabolism of acetoacetate by this enzyme is sufficient to account for the production of CO2 from 3-hydroxybutyrate.  相似文献   

8.
Alterations in myocardial energy substrate utilization contribute to the development of cardiomyopathic changes in insulin-dependent and non-insulin-dependent diabetic rats. Energy substrate utilization and contractile function, however, have not been characterized in insulin-resistant diabetes. In this study, we studied these parameters in the insulin-resistant obese JCR:LA-cp rat homozygous for the corpulent gene (cp/cp). Homozygous (+/+) or heterozygous (+/cp) lean non-insulin-resistant rats were used as controls. Isolated working hearts from cp/cp and lean control rats were perfused with Krebs-Henseleit buffer containing either 11 mM [U-14C]glucose and 0.4 mM palmitate or 11 mM glucose and 0.4 mM [1-14C]palmitate. Unlike control hearts, hearts from cp/cp rats were found to require high doses of insulin and Ca2+ concentrations of less than or equal to 1.75 mM to maintain mechanical function. In the presence of 2,000 microU/ml insulin, contractile function from cp/cp rat hearts was not depressed in the presence of either 1.25 or 1.75 mM Ca2+. Steady-state glucose oxidation rates in hearts perfused with 1.25 mM Ca2+ and 2,000 microU/ml insulin were 811 +/- 86 (SE) and 612 +/- 51 nmol.min-1.g dry wt-1 in cp/cp and control rats, respectively. Palmitate oxidation was 307 +/- 47 and 307 +/- 47 nmol.min-1.g dry wt-1 in cp/cp and lean control hearts, respectively. Under these perfusion conditions, 40% of myocardial ATP production was derived from glucose, whereas 60% was derived from palmitate in both cp/cp and control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The utilisation of glucose, glutamine, acetoacetate and D-3-hydroxybutyrate were investigated over 72 h of incubation of rat splenic lymphocytes, with and without concanavalin A. Lymphocytes consumed both ketone bodies; acetoacetate was consumed preferentially. The ketone bodies reduced glucose consumption by 30-50%, but had little effect on lactate production. Glutamine uptake was concentration dependent up to 4 mM, and consumption was increased in the presence of concanavalin. Glutamine stimulated glucose consumption and lactate production in both resting and activated cells. Complete oxidation contributed 65% of glucose-derived ATP, but less than 40% of glutamine-derived ATP. Glutamine metabolism makes only a minor contribution to lymphocyte ATP generation.  相似文献   

10.
To investigate the role of high concentrations of dl-3-hydroxybutyrate (DL-3-HB) in preventing heart damage after prolonged fasting, infarct size and the incidence of apoptosis caused by ischemia-reperfusion were determined in four groups of Wistar rats. Fed rats (+/-DL-3-HB group) and fasted rats (+/-DL-3-HB group) were subjected to 30 min of left coronary artery occlusion and 120 min of reperfusion. DL-3-HB was administered intravenously 60 min before the coronary artery occlusion. Infarct size, defined by triphenylyetrazolium chloride (TTC) staining, was reduced from 72 +/- 3% (fed group), 75 +/- 5% (fed + DL-3-HB group), and 70 +/- 5% (fasting group), respectively, to 26 +/- 4% (P < 0.01 vs. fasting + DL-3-HB group). Apoptosis, as defined by single-stranded DNA staining, was significantly reduced in the subendocardial region in the fasting + DL-3-HB group (9 +/- 2%) compared with the other groups (39 +/- 6% in the fed group, 37 +/- 5% in the fed + DL-3-HB group, and 34 +/- 3% in the fasting group; P < 0.01). In addition, levels of ATP in the fasting + DL-3-HB group were significantly higher compared with other groups after 30 min of ischemia and 120 min of reperfusion (P < 0.01). In conclusion, the present study demonstrates that high concentrations of DL-3-HB reduces myocardial infarction size and apoptosis induced by ischemia-reperfusion, possibly by providing increased energy substrate to the fasted rat myocardium.  相似文献   

11.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

12.
1. The extractions of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo were calculated from measurements of their arterial and coronary sinus blood concentration. Elevation of plasma free fatty acid concentrations by infusion of intralipid and heparin resulted in increased extraction of free fatty acids and diminished extractions of glucose, lactate and pyruvate by the heart. It is suggested that metabolism of free fatty acids by the heart in vivo, as in vitro, may impair utilization of these substrates. These effects of elevated plasma free fatty acid concentrations on extractions by the heart in vivo were reversed by injection of dichloroacetate, which also improved extraction of lactate and pyruvate by the heart in vivo in alloxan diabetes. 2. Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts from fed normal or alloxan-diabetic rats perfused with glucose and insulin. Dichloroacetate inhibited oxidation of acetate and 3-hydroxybutyrate and partially reversed inhibitory effects of these substrates on the oxidation of glucose. In rat diaphragm muscle dichloroacetate inhibited oxidation of acetate, 3-hydroxybutyrate and palmitate and increased glucose oxidation and pyruvate oxidation in diaphragms from alloxan-diabetic rats. Dichloroacetate increased the rate of glycolysis in hearts perfused with glucose, insulin and acetate and evidence is given that this results from a lowering of the citrate concentration within the cell, with a consequent activation of phosphofructokinase. 3. In hearts from normal rats perfused with glucose and insulin, dichloroacetate increased cell concentrations of acetyl-CoA, acetylcarnitine and glutamate and lowered those of aspartate and malate. In perfusions with glucose, insulin and acetate, dichloroacetate lowered the cell citrate concentration without lowering the acetyl-CoA or acetylcarnitine concentrations. Measurements of specific radioactivities of acetyl-CoA, acetylcarnitine and citrate in perfusions with [1-(14)C]acetate indicated that dichloroacetate lowered the specific radio-activity of these substrates in the perfused heart. Evidence is given that dichloroacetate may not be metabolized by the heart to dichloroacetyl-CoA or dichloroacetylcarnitine or citrate or CO(2). 4. We suggest that dichloroacetate may activate pyruvate dehydrogenase, thus increasing the oxidation of pyruvate to acetyl-CoA and acetylcarnitine and the conversion of acetyl-CoA into glutamate, with consumption of aspartate and malate. Possible mechanisms for the changes in cell citrate concentration and for inhibitory effects of dichloroacetate on the oxidation of acetate, 3-hydroxybutyrate and palmitate are discussed.  相似文献   

13.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

14.
The relationship between maternal plasma and amniotic fluid (AF) concentrations of glucose, insulin, C-peptide and 3-hydroxybutyrate (3-HB) was analysed between 45 to 140 minutes after a standardized breakfast in 8 type I diabetic women without residual betacell function and in 13 nondiabetic control women during the last trimester of gestation. AF levels of both glucose and C-peptide were slightly and AF insulin levels significantly (P less than 0.05) elevated above normal in the diabetic women. 3-HB levels in plasma and in AF were significantly (P less than 0.05) elevated in the diabetic group between 45 to 65 minutes after breakfast. AF insulin and glucose was significantly correlated in the diabetic group (r = 0.96, P less than 0.05). During the 2 hour study period AF levels of glucose, insulin and C-peptide remained essentially unchanged in both groups of women. Changes in maternal plasma 3-HB concentrations seemed to be more rapidly reflected in AF.  相似文献   

15.
Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague-Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs-Henseleit solution containing 11 mmol/L glucose, 100 muU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output x heart rate (in (mL/min).(beats/min).10-2), was deteriorated in diabetic (73 +/- 4) and TMZ-treated diabetic (61 +/- 7) groups compared with control (119 +/- 3) and TMZ-treated controls (131 +/- 6). TMZ treatment increased coronary flow in TMZ-treated control (23 +/- 1 mL/min) hearts compared with untreated controls (18 +/- 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 mumol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.  相似文献   

16.
A possible mechanism for the anti-ketogenic action of alanine in the rat   总被引:6,自引:6,他引:0  
1. The anti-ketogenic effect of alanine has been studied in normal starved and diabetic rats by infusing l-alanine for 90min in the presence of somatostatin (10μg/kg body wt. per h) to suppress endogenous insulin and glucagon secretion. 2. Infusion of alanine at 3mmol/kg body wt. per h caused a 70±11% decrease in [3-hydroxybutyrate] and a 58±9% decrease in [acetoacetate] in 48h-starved rats. [Glucose] and [lactate] increased, but [non-esterified fatty acid], [glycerol] and [3-hydroxybutyrate]/[acetoacetate] were unchanged. 3. Infusion of alanine at 1mmol/kg body wt. per h caused similar decreases in [ketone body] (3-hydroxybutyrate plus acetoacetate) in 24h-starved normal and diabetic rats, but no change in other blood metabolites. 4. Alanine [3mmol/kg body wt. per h] caused a 72±9% decrease in the rate of production of ketone bodies and a 57±8% decrease in disappearance rate as assessed by [3-14C]acetoacetate infusion. Metabolic clearance was unchanged, indicating that the primary effect of alanine was inhibition of hepatic ketogenesis. 5. Aspartate infusion at 6mmol/kg body wt. per h had similar effects on blood ketone-body concentrations in 48h-starved rats. 6. Alanine (3mmol/kg body wt. per h) caused marked increases in hepatic glutamate, aspartate, malate, lactate and citrate, phosphoenolpyruvate, 2-phosphoglycerate and glucose concentrations and highly significant decreases in [3-hydroxybutyrate] and [acetoacetate]. Calculated [oxaloacetate] was increased 75%. 7. Similar changes in hepatic [malate], [aspartate] and [ketone bodies] were found after infusion of 6mmol of aspartate/kg body wt. per h. 8. It is suggested that the anti-ketogenic effect of alanine is secondary to an increase in hepatic oxaloacetate and hence citrate formation with decreased availability of acetyl-CoA for ketogenesis. The reciprocal negative-feedback cycle of alanine and ketone bodies forms an important non-hormonal regulatory system.  相似文献   

17.
Heart mitochondria from chronically diabetic rats ('diabetic mitochondria'), in metabolic State 3, oxidized 3-hydroxybutyrate and acetoacetate at a relatively slow rate, as compared with mitochondria from normal rats ('normal mitochondria'). No significant differences were observed, however, with pyruvate or L-glutamate plus L-malate as substrates. Diabetic mitochondria also showed decreased 3-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-oxoacid CoA-transferase activities, but cytochrome content and NADH-dehydrogenase, succinate dehydrogenase, cytochrome oxidase and acetoacetyl-CoA thiolase activities proved normal. The decrease of 3-hydroxybutyrate dehydrogenase activity was observed in diabetic mitochondria subjected to different disruption procedures, namely freeze-thawing, sonication or hypoosmotic treatment, between pH 7.5 and 8.5, at temperatures in the range 6-36 degrees C, and in the presence of L-cysteine. Determination of the kinetic parameters of the enzyme reaction in diabetic mitochondria revealed diminution of maximal velocity (Vmax) as its outstanding feature. The decrease in 3-hydroxybutyrate dehydrogenase in diabetic mitochondria was a slow-developing effect, which reached full expression 2-3 months after the onset of diabetes; 1 week after onset, no significant difference between enzyme activity in diabetic and normal mitochondria could be established. Insulin administration to chronically diabetic rats for 2 weeks resulted in limited recovery of enzyme activity. G.l.c. analysis of fatty acid composition and measurement of diphenylhexatriene fluorescence anisotropy failed to reveal significant differences between diabetic and normal mitochondria. The Arrhenius-plot characteristics for 3-hydroxybutyrate dehydrogenase in membranes of diabetic and normal mitochondria were similar. It is assumed that the variation of the assayed enzymes in diabetic mitochondria results from a slow adaptation to the metabolic conditions resulting from diabetes, rather than to insulin deficiency itself.  相似文献   

18.
The specific activity of D-3-hydroxybutyrate dehydrogenase is reduced by about a third in liver and heart mitochondria of hyperthyroid rats. State 3 respiration is also reduced in isolated mitochondria from the same animals when DL-3-hydroxybutyrate is the substrate. Determination of the kinetic parameters of the membrane-bound D-3-hydroxybutyrate dehydrogenase in liver of hyperthyroid rats reveals a decreased in maximal velocity (Vmax). The Michaelis and dissociation constants of NAD+ and D-3-hydroxybutyrate are also significantly influenced, thus indicating that both the affinity and the binding of this enzyme toward its substrates are affected. In hyperthyroid rats a significant ketone-body increase is found in both liver and heart: in blood, an almost doubled concentration can be measured. At the same time, in heart mitochondria of these animals the activity of succinyl-coenzyme A: 3-oxoacid coenzyme A-transferase is significantly reduced. The decrease in both D-3-hydroxybutyrate dehydrogenase and 3-oxoacid coenzyme A-transferase associated with the increase in ketone bodies supports the suggestion that there is a lower utilization of these compounds by peripheral tissues. In the blood of hyperthyroid rats a higher D-3-hydroxybutyrate/acteoacetate ratio is also found, probably resulting from a selective utilization of the two compounds in this pathological state.  相似文献   

19.
Tsai YC  Chou YC  Wu AB  Hu CM  Chen CY  Chen FA  Lee JA 《Life sciences》2006,78(12):1385-1391
In researches of ketone bodies, D-3-hydroxybutyrate (D-3HB) is usually the major one which has been investigated; in contrast, little attention has been paid to L-3-hydroxybutyrate (L-3HB), because of its presence in trace amounts, its dubious metabolism, and a lack of knowledge about its sources. In the present study we determined the distributions of enantiomers of 3-hydroxybutyrate (3HB) in rat brain, liver, heart, and kidney homogenates, and we found the heart homogenate contained an enriched amount of L-3HB (37.67 microM/mg protein) which generated a significant ratio of 66/34 (D/L). The ratio was altered to be 87/13 in the diabetic rat heart homogenate. We subsequently found this changed ratio of D/L-3HB may contribute to reduce glucose utilization in cardiomyocytes. Glucose utilization by cardiomyocytes with 5 mM of D-3HB was decreased to 61% of the control, but no interference was observed when D-3HB was replaced with L-3HB, suggesting L-3HB is not utilized for the energy fuel as other ketone bodies are. In addition, the reduced glucose utilization caused by D-3HB gradually recovered in a dose-dependent manner with administration of additional L-3HB. The results gave the necessity of taking L-3HB together with D-3HB into account with regard to glucose utilization, and L-3HB may be a helpful substrate for improving inhibited cardiac pyruvate oxidation caused by hyperketonemia.  相似文献   

20.
Women less than 50 years of age, the majority of whom are likely premenopausal and exposed to estrogen, are at greater risk of a poor short-term recovery after myocardial ischemia than men and older women. Since estrogen enhances non-cardiac lipid utilization and increased lipid utilization is associated with poor post-ischemic heart function, we determined the effect of estrogen replacement on post-ischemic myocardial function and fatty acid oxidation. Female Sprague-Dawley rats, either intact (n = 15) or ovariectomized and treated with 17beta-estradiol (0.1 mg x kg(-1) x day(-1), s.c., n = 14) or corn oil vehicle (n = 16) for 5 weeks, were compared. Function and fatty acid oxidation of isolated working hearts perfused with 1.2 mM [9,10-3H]palmitate, 5.5 mM glucose, 0.5 mM lactate, and 100 mU/L insulin were measured before and after global no-flow ischemia. Only 36% of hearts from estrogen-treated rats recovered after ischemia compared with 56% from vehicle-treated rats (p > 0.05, not significant), while 93% of hearts from intact rats recovered (p < 0.05). Relative to pre-ischemic values, post-ischemic function of estrogen-treated hearts (26.3 +/- 10.1%) was significantly lower than vehicle-treated hearts (53.4 +/- 11.8%, p < 0.05) and hearts from intact rats (81.9 +/- 7.0%, p < 0.05). Following ischemia, fatty acid oxidation was greater in estrogen-treated hearts than in the other groups. Thus, estrogen replacement stimulates fatty acid oxidation and impairs post-ischemic recovery of isolated working hearts from ovariectomized female rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号