首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
To study the relationship between the primary structure of the c-myc protein and some of its functional properties, we made in-frame insertion and deletion mutants of the normal human c-myc coding domain that was expressed from a retroviral promoter-enhancer. We assessed the effects of these mutations on the ability of c-myc protein to cotransform normal rat embryo cells with a mutant ras gene, induce foci in a Rat-1-derived cell line (Rat-1a), and localize in nuclei. Using the cotransformation assay, we found two regions of the protein (amino acids 105 to 143 and 321 to 439) where integrity was critical: one region (amino acids 1 to 104) that tolerated insertion and small deletion mutations, but not large deletions, and another region (amino acids 144) to 320) that was largely dispensable. Comparison with regions that were important for transformation of Rat-1a cells revealed that some are essential for both activities, but others are important for only one or the other, suggesting that the two assays require different properties of the c-myc protein. Deletion of each of three regions of the c-myc protein (amino acids 106 to 143, 320 to 368, and 370 to 412) resulted in partial cytoplasmic localization, as determined by immunofluorescence or immunoprecipitation following subcellular fractionation. Some abnormally located proteins retained transforming activity; most proteins lacking transforming activity appeared to be normally located.  相似文献   

4.
5.
6.
7.
The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.  相似文献   

8.
Function of the c-Myc oncogenic transcription factor   总被引:29,自引:0,他引:29  
  相似文献   

9.
10.
11.
Although myc family genes are differentially expressed during development, their expression frequently overlaps, suggesting that they may serve both distinct and common biological functions. In addition, alterations in their expression occur at major developmental transitions in many cell lineages. For example, during mouse lens maturation, the growth arrest and differentiation of epithelial cells into lens fiber cells is associated with a decrease in L- and c-myc expression and a reciprocal rise in N-myc levels. To determine whether the down-regulation of L- and c-myc are required for mitotic arrest and/or completion of differentiation and whether these genes have distinct or similar activities in the same cell type, we have studied the consequences of forced L- and c-myc expression in the lens fiber cell compartment using the alpha A-crystallin promoter in transgenic mice (alpha A/L-myc and alpha A/c-myc mice). With respect to morphological and molecular differentiation, alpha A/L-myc lenses were characterized by a severely disorganized lens fiber cell compartment and a significant decrease in the expression of a late-stage differentiation marker (MIP26); in contrast, differentiation appeared to be unaffected in alpha A/c-myc mice. Furthermore, an analysis of proliferation indicated that while alpha A/L-myc fiber cells withdrew properly from the cell cycle, inappropriate cell cycle progression occurred in the lens fiber cell compartment of alpha A/c-myc mice. These observations indicate that continued late-stage expression of L-myc affected differentiation processes directly, rather than indirectly through deregulated growth control, whereas constitutive c-myc expression inhibited proliferative arrest, but did not appear to disturb differentiation. As a direct corollary, our data indicate that L-Myc and c-Myc are involved in distinct physiological processes in the same cell type.  相似文献   

12.
13.
Induction of apoptosis in fibroblasts by c-myc protein.   总被引:288,自引:0,他引:288  
Although Rat-1 fibroblasts expressing c-myc constitutively are unable to arrest growth in low serum, their numbers do not increase in culture because of substantial cell death. We show this cell death to be dependent upon expression of c-myc protein and to occur by apoptosis. Regions of the c-myc protein required for induction of apoptosis overlap with regions necessary for cotransformation, autoregulation, and inhibition of differentiation, suggesting that the apoptotic function of c-myc protein is related to its other functions. Moreover, cells with higher levels of c-myc protein are more prone to cell death upon serum deprivation. Finally, we demonstrate that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.  相似文献   

14.
15.
We have studied the regulation and role of c-Myc and Max in the differentiation pathways induced in K562 cells by 12-O-tetradecanoyl phorbol-13 acetate (TPA) and staurosporine, an activator and inhibitor, respectively, of protein kinase C (PKC). We found that staurosporine induced megakaryocytic differentiation, as revealed by the cellular ultrastructure, platelet formation, and DNA endoreduplication. In contrast, TPA induced a differentiated phenotype that more closely resembled that of the monocyte-macrophage lineage. c-myc expression was down-regulated in K562 differentiated by both TPA and staurosporine, whereas max expression did not change in either case. Although PKC enzymatic activity was low in cells terminally differentiated with TPA and staurosporine, inhibition of PKC activity by itself did not induce c-myc down-regulation. We conclude that the c-myc gene is switched off as a consequence of the differentiation process triggered by these drugs in a manner independent from PKC. Ectopic overexpression of c-Myc in K562 cells did not affect the monocytic-macrophagic and megakaryocytic differentiation, indicating that c-Myc suppression is not required for these processes in K562. Similarly, both differentiation pathways were not affected by Max overexpression or by concomitant overexpression of c-Myc and Max. This result is in contrast with the inhibition of erythroid differentiation of K562 exerted by c-Myc, suggesting divergent roles for c-Myc/Max, depending on the differentiation pathway.  相似文献   

16.
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.  相似文献   

17.
DNA-binding domain of human c-Myc produced in Escherichia coli.   总被引:7,自引:6,他引:1       下载免费PDF全文
We have identified the domain of the human c-myc protein (c-Myc) produced in Escherichia coli that is responsible for the ability of the protein to bind sequence-nonspecific DNA. Using analysis of binding of DNA by proteins transferred to nitrocellulose, DNA-cellulose chromatography, and a nitrocellulose filter binding assay, we examined the binding properties of c-Myc peptides generated by cyanogen bromide cleavage, of mutant c-Myc, and of proteins that fuse portions of c-Myc to staphylococcal protein A. The results of these analyses indicated that c-Myc amino acids 265 to 318 were responsible for DNA binding and that other regions of the protein (including a highly conserved basic region and a region containing the leucine zipper motif) were not required. Some mutant c-Mycs that did not bind DNA maintained rat embryo cell-cotransforming activity, which indicated that the c-Myc property of in vitro DNA binding was not essential for this activity. These mutants, however, were unable to transform established rat fibroblasts (Rat-1a cells) that were susceptible to transformation by wild-type c-Myc, although this lack of activity may not have been due to their inability to bind DNA.  相似文献   

18.
19.
4-Hydroxynonenal (HNE) is a highly reactive aldehyde, produced by cellular lipid peroxidation, able to inhibit proliferation and to induce differentiation in MEL cells at concentrations similar to those detected in several normal tissues. Inducer-mediated differentiation of murine erythroleukemia (MEL) cells is a multiple step process characterized by modulation of several genes as well as by a transient increase in the amount of membrane-associated protein kinase C (PKC) activity. Here we demonstrate that a rapid translocation of PKC activity from cytosol to the membranes occurs during the differentiation induced by HNE. When PKC is completely translocated by phorbol-12-myristate-13-acetate (TPA), the degree of HNE-induced MEL cells differentiation is highly decreased. However, if TPA is washed out from the culture medium before the exposition to the aldehyde, HNE gradually resumes its differentiative ability. The incubation of cells with a selective inhibitor of PKC activity, bisindolylmaleimide GF 109203X, partially prevents the HNE-induced differentiation in MEL cells. In conclusion, our results demonstrate that HNE-induced MEL cell differentiation is preceded by a rapid translocation of PKC activity, and that the inhibition of this phenomenon prevents the onset of terminal differentiation.  相似文献   

20.
We investigated the ability of the proto-oncogene L-myc to substitute for c-myc in blocking murine erythroleukemia differentiation. Murine erythroleukemia cells (line C19) were transfected with recombinant plasmids containing genomic and cDNA fragments of the L-myc gene driven by a Moloney murine leukemia virus long terminal repeat. Clones expressing constitutive high levels of L-myc failed to differentiate in response to the chemical inducer N,N'-hexamethylene bisacetamide (HMBA). The block to differentiation correlated with the level of L-myc expression. Furthermore, transfected clones grown in the presence of inducer for an extended period of time showed an increased level of L-myc expression. These results suggest that functional domains of the c-myc gene involved in differentiation are located in the discrete regions of homology between the c- and L-myc genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号