首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pushing the limits of the scanning mechanism for initiation of translation   总被引:61,自引:0,他引:61  
Kozak M 《Gene》2002,299(1-2):1-34
  相似文献   

2.
Within the conserved 5' untranslated region (UTR) of the pestivirus genome three highly variable regions were identified. Preceding the polyprotein start codon, multiple cryptic AUG codons and several small open reading frames are characteristic for all the five pestiviruses. Inspection of the context of AUGs revealed that the polyprotein initiation AUG of pestivirus has a weak context for efficient translation initiation. The most favorable context was found in two of the cryptic AUGs. Two oligopyrimidine-rich tracts upstream to the conserved either cryptic or authentic AUG in the 5'-UTR of pestivirus were identified and 83.3% of their nucleotide sequences are complementary to the consensus sequence at the 3' terminus of eucaryotic 18S rRNA. A secondary structure model for the 5'-UTR of pestivirus was predicted. Nucleotide sequence comparison among five pestiviruses led to the identification of a variable region and a conserved region in the 3'-UTR. A deletion of 41 nucleotides was found within the variable region in Osloss. A secondary structure model for the 3'-UTR was also predicted. The structural similarity of the 5'-UTR between pestiviruses and picornaviruses and hepatitis C viruses was demonstrated and the possible implications of features of the 5' and 3'-UTR of pestiviruses are discussed.  相似文献   

3.
4.
A reassessment of the translation initiation codon in vertebrates   总被引:13,自引:0,他引:13  
  相似文献   

5.
6.
钟智  李宏 《生物物理学报》2008,24(5):379-392
以细菌和古菌基因组5′ UTR序列作为研究对象,分析在5′ UTR 的3个不同阅读框架中三联体AUG的分布,发现无论是细菌还是古菌基因组都在阅读框1中有非常明显的AUG缺失(depletion)。AUG的缺失表明在起始密码子上游的AUG很可能会对基因的翻译起始产生影响。分析得知:绝大部分的AUG都是以uORF(upstream open reading frame)的形式出现的,uAUG(upstream AUG)的数量很少,特别是在阅读框1中,而且在细菌基因组的阅读框1中uAUG较多地出现在了含有SD序列的基因上游。比较发现,uAUG引导的序列在同义密码子使用上的偏好性较真正的编码序列差,这可能表明细菌和古菌在同义密码子使用上的偏好性也是决定基因准确地翻译起始的重要因素之一。  相似文献   

7.
8.
The translation start site (TSS) plays an important role in the control of the translational efficiency and cytoplasmic stability of eukaryotic mRNAs. The efficiency of TSS recognition is known to be influenced by sequence context, and mRNAs with "weak" TSSs are relatively abundant. We analyzed a sample of 4113 yeast genes in a search for features that might serve to compensate for the inefficient recognition of "weak" TSSs by initiating ribosomes. The first feature found to correlate with variations in TSS strength is differences in the stability of secondary structure upstream and downstream of the start AUG codon. The second feature concerns the characteristics of AUG triplets found at the beginning of the coding sequence, i.e., downstream of the predicted TSS. In particular, the proximal downstream AUG lies in frame with the CDS significantly more often if the TSS itself is located in a "weak" context. The accuracy of TSS annotation, the possibility of polypeptide heterogeneity due to the use of alternative downstream AUGs, and the influence of related features of mRNA sequences are discussed.  相似文献   

9.
MOTIVATION: The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. However, mRNAs with a suboptimal context of start AUG codon are relatively abundant. It is likely that at least some mRNAs with suboptimal start codon context contain the other signals providing additional information for efficient AUG recognition. RESULTS: Frequency of AUG codons at the beginning of the coding part of eukaryotic mRNAs was analyzed in relation to the context of translation start codon. It was found that the observed downstream AUG content in the mRNAs with optimal start codon context was close to the expected value, whereas it was significantly higher in the mRNAs with a suboptimal context. It is likely that downstream AUG codons can often be utilized as additional start sites to increase translation rate of mRNAs with a suboptimal context of the annotated start codon and many eukaryotic proteins can be characterized by some N-end heterogeneity.  相似文献   

10.
It is well known that non-coding mRNA sequences are dissimilar in many structural features. For individual mRNAs correlations were found for some of these features and their translational efficiency. However, no systematic statistical analysis was undertaken to relate protein abundance and structural characteristics of mRNA encoding the given protein. We have demonstrated that structural and contextual features of eukaryotic mRNAs encoding high- and low-abundant proteins differ in the 5′ untranslated regions (UTR). Statistically, 5′ UTRs of low-expression mRNAs are longer, their guanine plus cytosine content is higher, they have a less optimal context of the translation initiation codons of the main open reading frames and contain more frequently upstream AUG than 5′ UTRs of high-expression mRNAs. Apart from the differences in 5′ UTRs, high-expression mRNAs contain stronger termination signals. Structural features of low- and high-expression mRNAs are likely to contribute to the yield of their protein products.  相似文献   

11.
Summary In mammals, the sequence context surrounding an AUG start codon can alter the efficiency at which translation is initiated. Less is known about the AUG context requirements for translation initiation in plants. Using a maize transient assay, we present evidence that the naturally occurring AUG start codon of the Alcohol dehydrogenase-1 is efficiently used in vivo. We have also tested the effects of upstream, out-of-frame AUGs on the translation of firefly luciferase reporter gene mRNAs. The presence of an upstream out-of-frame AUG, even when surrounded by a poor context, eliminated most luciferase expression, suggesting efficient translation initiation at the upstream AUG. The relaxed requirements for AUG context in maize suggest that plants and mammals may differ in their requirements for efficient translation initiation.  相似文献   

12.
Human papillomaviruses (HPV) are unique in that they generate mRNAs that apparently can express multiple proteins from tandemly arranged open reading frames. The mechanisms by which this is achieved are uncertain and are at odds with the basic predictions of the scanning model for translation initiation. We investigated the unorthodox mechanism by which the E6 and E7 oncoproteins from human papillomavirus type 16 (HPV-16) can be translated from a single, bicistronic mRNA. The short E6 5' untranslated region (UTR) was shown to promote translation as efficiently as a UTR from Xenopus beta-globin. Insertion of a secondary structural element into the UTR inhibited both E6 and E7 expression, suggesting that E7 expression depends on ribosomal scanning from the 5' end of the mRNA. E7 translation was found to be cap dependent, but E6 was more dependent on capping and eIF4F activity than E7. Insertion of secondary structural elements at various points in the region upstream of E7 profoundly inhibited translation, indicating that scanning was probably continuous. Insertion of the E6 region between Renilla and firefly luciferase genes revealed little or no internal ribosomal entry site activity. However when E6 was located at the 5' end of the mRNA, it permitted over 100-fold-higher levels of downstream cistron translation than did the Renilla open reading frame. Internal AUGs in the E6 region with strong or intermediate Kozak sequence contexts were unable to inhibit E7 translation, but initiation at the E7 AUG was efficient and accurate. These data support a model in which E7 translation is facilitated by an extreme degree of leaky scanning, requiring the negotiation of 13 upstream AUGs. Ribosomal initiation complexes which fail to initiate at the E6 start codon can scan through to the E7 AUG without initiating translation, but competence to initiate is achieved once the E7 AUG is reached. These findings suggest that the E6 region of HPV-16 comprises features that sponsor both translation of the E6 protein and enhancement of translation at a downstream site.  相似文献   

13.
The 5' untranslated region (UTR) plays a central role in the regulation of mammalian translation initiation. Key components include RNA structure, upstream AUGs (uAUGs), upstream open reading frames (uORFs), and internal ribosome entry site elements that can interact to modulate the readout. We previously reported the characterization of two alternatively spliced 5' UTR isoforms of the human elk-1 gene. Both contain two uAUGs and a stable RNA stem-loop, but the long form (5' UTR(L)) was more repressive than the short form (5' UTR(S)) for initiation at the ELK-1 AUG. We now demonstrate that ELK-1 expression arises by a combination of leaky scanning and reinitiation, with the latter mediated by the small uORF2 conserved in both spliced isoforms. In HEK293T cells, a considerable fraction of ribosomes scans beyond the ELK-1 AUG in a reinitiation mode. These are sequestered by a series of out-of-frame AUG codons that serve to prevent access to a second in-frame AUG start site used to express short ELK-1 (sELK-1), an N-terminally truncated form of ELK-1 that has been observed only in neuronal cells. We present evidence that all these events are fine-tuned by the nature of the 5' UTR and the activity of the α subunit of eukaryotic initiation factor 2 and provide insights into the neuronal specificity of sELK-1 expression.  相似文献   

14.
Pesole G  Bernardi G  Saccone C 《FEBS letters》1999,464(1-2):60-62
The efficiency of AUG start codon recognition in translation initiation is modulated by its sequence context. Here we investigated a non-redundant set of 5914 human genes and show that this context is different in genes located in different isochores. In particular, of the two main consensus start sequences, RCCaugR is five-fold more represented than AARaugR in genes from the GC-rich H3 isochores compared to genes from the GC-poor L isochores. Furthermore, genes located in GC-rich isochores have shorter 5' UTRs and stronger avoidance of upstream AUG than genes located in GC-poor isochores. This suggests that genes requiring highly efficient translation are located in GC-rich isochores and genes requiring fine modulation of expression are located in GC-poor isochores. This is in agreement with independent data from the literature concerning the location of housekeeping and tissue-specific genes, respectively.  相似文献   

15.
Human ACAT1 cDNA K1 was first cloned and functionally expressed in 1993. There are two adjacent in-frame AUG codons, AUG1397-1399 and AUG1415-1417, at 5′-terminus of the open reading frame (ORF,nt 1397-3049) of human ACAT1 mRNA corresponding to cDNA K1. In current work, these two adjacent in-frame AUGs at 5′-terminus of the predicted ORF (5′-ORF-AUGs) as start codons for translation initiation of human ACAT1 mRNA were characterized in detail. Codon mutations indicated that both of these two adjacent 5′-ORF-AUGs can be selected as start codons but the first 5′-ORF-AUG1397-1399 is a main start codon consistent with that of the predicted ORF of human ACAT1 mRNA. Further deletion and mutation analyses demonstrated that a stable upstream stem-loop structure enhanced the selection of the first 5′-ORF-AUG1397-1399 as a main start codon, in addition to upstream nucleotide A in the -3 position, which is a key site of Kozak sequence. In addition, result of ACAT1 enzymatic activity assay showed no obvious difference between these two ACAT1 proteins respectively initiated from the two adjacent 5′-ORF-AUGs. This work showed that astable upstream stem-loop structure could modulate the start codon selection during translation initiation of mRNAs that contain adjacent multi-5′-ORF-AUGs.  相似文献   

16.
Sen N  Cao F  Tavis JE 《Journal of virology》2004,78(21):11751-11757
The duck hepatitis B virus (DHBV) polymerase (P) is translated by de novo initiation from a downstream open reading frame (ORF) that partially overlaps the core (C) ORF on the bicistronic pregenomic RNA (pgRNA). The DHBV P AUG is in a poor context for translational initiation and is preceded by 14 AUGs that could intercept scanning ribosomes, yet P translation is unanticipatedly rapid. Therefore, we assessed C and P translation in the context of the pgRNA. Mutating the upstream C ORF revealed that P translation was inversely related to C translation, primarily due to occlusion of P translation by ribosomes translating C. Translation of the pgRNA was found to be cap dependent, because inserting a stem-loop (BamHI-SL) that blocked >90% of scanning ribosomes at the 5' end of the pgRNA greatly inhibited C and P synthesis. Neither mutating AUGs between the C and P start sites in contexts similar to that of the P AUG nor blocking ribosomal scanning by inserting the BamHI-SL between the C and P start codons greatly altered P translation, indicating that most ribosomes that translate P do not scan through these sequences. Finally, optimizing the P AUG context did not increase P translation. Therefore, the majority of the ribosomes that translate P are shunted from a donor region near the 5' end of the pgRNA to an acceptor site at or near the P AUG, and the shunt acceptor sequences may augment initiation at the P AUG.  相似文献   

17.
18.
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.  相似文献   

19.

Background  

The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号