首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of colominic acid in Escherichia coli K-235 is strictly regulated by temperature. Evidence for the role of cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase in this regulation was obtained by measuring its level in E. coli grown at 20 and 37°C. No activity was found in E. coli grown at 20°C. CMP-Neu5Ac started to be quickly synthesized when bacteria grown at 20°C were transferred to 37°C and was halted when cells grown at 37°C were transferred to 20°C. These findings suggest that temperature regulates the synthesis of this enzyme and therefore the concentration of CMP-Neu5Ac necessary for the biosynthesis of colominic acid.  相似文献   

2.
Standardization of Human Diploid Cell Cultivation   总被引:3,自引:1,他引:2       下载免费PDF全文
Human embryonic diploid lung fibroblasts grown in Eagle's medium were exposed continually to a variety of environmental conditions over a large number of passages to observe how these conditions affected the growth and longevity of these cells in vitro. The cells grew well at temperatures between 34 and 37 C and some cells could be adapted to grow at 40 C. Very limited growth occurred at 30 to 31 C; however, confluent monolayers of cells could be maintained for months at 30 C and still give rise to actively growing cultures. Increasing the amino acid concentration in Eagle's medium or the calf serum concentration above 10% had no effect on the growth rate or longevity. One per cent calf serum could not support prolonged active growth. Trypsin concentrations between 1 and 0.1% and crystalline trypsin at 50 μg/ml showed no influence on cell growth. Ethylenediaminetetraacetic acid treatment and scraping, however, destroyed many of the cells, and the survivors grew poorly. The clonal morphology varied with age. Young cells frequently gave rise to densely packed clones, whereas older cells gave rise to clones with widely scattered cells. The cloning efficiency was high when the cells were young but decreased rapidly with successive passage. It was relatively constant from the 7th to 20th passage at about 15%.  相似文献   

3.
Heterorhabditis indica is a potential agent for the biological control of grubs in sugarcane fields in India. The type strain LN 2 was transferred to monoxenic cultures on its symbiont Photorhabdus luminescens and successfully produced on solid media. In liquid cultures, a mean dauer juvenile yield of 457 000 was obtained with a maximum of 648 000 per ml. Comparatively high yields have not been reported before. Therefore, costs related to the liquid culture production of H. indica will be lower than for other entomopathogenic nematodes currently used in biocontrol. Different bacterial clones had no significant influence on the dauer juvenile yields in liquid media. The exit from the dauer juvenile stage (recovery) after inoculation and the number of hermaphrodites significantly decreased when culture temperature was increased from 25-30 ° C; the dauer juvenile yields were not affected. The cell density of P. luminescens in batch cultures was higher at 25 and 30 ° C than at growth temperatures of 35 and 37 ° C. In continuous culture, the bacterial growth was inhibited when the growth temperature reached 38 ° C. After approximately 60 h, the bacteria adapted to higher temperature and the growth rate increased again. When the temperature was further increased to 40 ° C, the bacterial growth was inhibited.  相似文献   

4.
Fermentation, formulation and drying studies are necessary and important in order to simplify production, transportation, storage and application of biocontrol agents. Air-drying is a convenient and economical drying method for developing microbial biocontrol products. Experiments were designed to determine the effect of temperature shock during liquid cultivation on cell survival of a Fusarium head blight biocontrol agent Cryptococcus nodaensis OH 182.9 after air-drying. OH 182.9 cultures were grown at various temperatures in semi-defined complete liquid media, with cultures grown at 25°C for 48 h serving as the standard control culture condition. Harvested cultures were mixed with 10% diatomaceous earth (DE), vacuum filtered, air dried for 20 h at 60-70% RH, and stored at 4°C. In general, cells grown at 25°C for 20 h followed by cultivation at 15°C for 28 h survived air-drying better than control cells. The survival of cells subjected to heat shock at 31°C generally did not differ from control cells regardless of whether heat shock was applied at the late exponential or early stationary stage of growth. In another experiment designed to optimize the effect of cold temperatures during cultivation on subsequent survival of air-dried cells in DE at 4°C and room temperature (25°C), prolonged (28 h) cold shock at 10 and 15°C after incubation at 25°C for 20 h enhanced the storage stability (shelf-life) of a DE-formulated OH 182.9 product. In greenhouse tests, air-dried cells of OH 182.9 stored for 6 weeks at 4°C maintained a higher biocontrol efficacy than cells stored for 6 weeks at 25°C.  相似文献   

5.
There are two temperature optima connected with lignin peroxidase synthesis by Phanerochaete chrysosporium INA-12. One, at 37°C, is for the mycelium-growing phase; the other, at 30°C, is for the lignin peroxidase-producing phase. One of six extracellular proteins with ligninase activity increased when cultures were grown at 30°C for the entire fermentation period or when cultures were grown at 37°C for the first 2 days of incubation and then shifted to 30°C, compared with the activity of control cultures grown at 37°C for the entire fermentation period. The unsaturation of fatty acid (Δ/mole) of P. chrysosporium INA-12 mycelium decreased from 1.25 to 1.03 when the growth temperature was shifted from 20 to 40°C.  相似文献   

6.
The survival at 4 °C of mouse fibroblasts (strain L-929) and rat liver cells (strain JTC-25·P5) was kinetically analysed after they had been pre-incubated at 37 °C in medium with or without supplement of serum. Both the composition of medium used for preincubation at 37 °C and that employed for storage at 4 °C had influence on the survival period.When the cells had been grown at 37 °C in Eagle minimal essential medium (MEM) alone, they rapidly lost their viability at 4 °C from the beginning. However, when grown at 37 °C in MEM supplemented with calf serum, they maintained viability at 4 °C for about 16 days and 8 days for L cells and JTC-25·P5 cells respectively, before the initiation of rapid loss of viability. The presence of macromolecular fraction of calf serum in the medium during preincubation was found to be responsible for the prolongation of survival at 4 °C.  相似文献   

7.
Guar (Cyamopsis tetregonoloba (L.) may be grown when soil temperatures are potentially high enough at the time of planting to inhibit nodulation and N2 fixation. An experiment was conducted using controlled conditions to determine the influence of high root temperature on growth and N2 fixation of guar. The experiment included two strains of rhizobia, two varieties of guar, two mineral N treatments, and root temperatures of 34, 37, and 40°C. Plants were grown for 44 days. The root temperature of 40°C reduced N fixation by at least 80% and nodule weight by more than 50%. Significant interactions occurred between most factors in influencing nodulation, N2 fixation and dry matter production. Guar, nodulated by rhizobial strain GAR022-1 and fully dependent on N2 fixation or provided with starter mineral N (25 mg pot–1), was not influenced by the root temperature of 37°C as compared to 34°C. Nodulation and N2 fixation by strain 32H1 was reduced by at least 40% when no starter mineral N was provided and the root temperature was 37°C. Providing starter mineral N to one variety of guar doubled the quantity of N2 fixed by strain 32H1 at both 34 and 37°C but N2 fixation was lower at the higher root temperature. It appears that root temperatures between 37° and 40°C bracketed the critical root temperature for N2 fixation by nodulated guar and that the critical root temperature for guar dependent on mineral N was above 40°C.  相似文献   

8.

1. 1.|In the freshwater fish Chalcalburnus chalcoides, an increase in the body (standard) size caused decreases in the upper LT-50 from 36.6° to 36.0°C and lower LT-50 from 6.3° to 5.3°C

2. 2.|The fish acclimated to constant temperatures between 10°C and 30°C showed reasonable heat acclimation and also reasonable cold acclimation. Thus, an increase in the acclimation temperature from 10°C to 30°C caused increases in the upper LT-50 from 34° to 36.2°C and the lower LT-50 from 1.25 to 6.5°C.

3. 3|The mean survival time — temperature curves of 10°, 20° and 30°C acclimated fish at various constant temperatures showed decreased in the survival tim ewith increasing lethal temperatures. Furthermore, an increase in the acclimation temperature causes a shift in the survival duration-temperature curve to the right, i.e., the fish become more heat resistant. Thus, the mean survival duration of 10°, 20° and 30°C acclimated fish at 35°C were 7.5, 79.6 and 530 minutes, respectively.

4. 4.|The effect of the thermal experience to changing lethal temperatures depends on the first lethal temperature to which the fish were exposed as well as the sequence of temperature changes. In the experiments in which the first lethal temperatures were between 32° and 34°C and the temperature was varied in an ascending order, their thermal resistance was increased and the fish required 114 to 174% of the expected lethal doses to die while in the experiments in which the starting temperature were between 38° and 40°C and the temperature varied in descending order, the fish become more sensitive to the upper lethal temperature and they died after receiving only 62 to 81% of the expected lethal doses. Thus, with a gradual increase in the lethal temperature, the fish show additional acclimation in the zone of resistance which in turn causes an increase in the thermal resistance. This may have ecological significance in nature.

Author Keywords: acclimation; lethal temperatures; temperature change; survival  相似文献   


9.
The effect of the temperature of growth and carbon source on the production and secretion of β-xylosidase (EC 3.2.1.37) by the thermotolerant fungi Aspergillus fumigatus was studied in submerged cultures. In cultures developed at optimal temperature (30 °C), the enzyme was predominantly cell-bound, while in cultures developed at higher temperature (42 °C), the β-xylosidase activity was predominantly found in the cell-free filtrates. The use of corn cob powder instead of xylan as substrate increased considerably the secretion of enzyme. The highest level of extracellular β-xylosidase (45 U/ml or 360 U/mg protein) was obtained in 3% corn cob cultures grown at 42 °C for 72 h. The partially purified enzyme was active and stable at high temperatures. The presence of high titres of β-xylosidase activity in association with xylanase in the culture filtrates enhanced the efficiency of the pulp hydrolysis process.  相似文献   

10.
1. 1. Human T cell proliferation is suppressed at 27°C, and is both diminished and delayed at 32°C.
2. 2. Temperature shift-up and viability assays indicated that concanavalin A stimulation at 27°C induced cell death in contrast to a transient unresponsiveness (anergy) induced by monoclonal anti-CD3 antibody (CD3) and the superantigen, staphylococcal exterotoxin B.
3. 3. Phytohemagglutinin also induced cell death at 27°C; however, some cells remained viable and proliferation occurred when such cultures were subsequently moved to 37°C.
4. 4. Low temperature suppression of T cell activation was not overcome by a mixture of phorbol ester and calcium ionophore indicating a probable block post-protein kinase C activation. This was confirmed in temperature shift-down assays where incubation for 18–24 h at 37°C was required to bypass the block at 27°C.
5. 5. With the exception of CD3, stimulation at 27°C with the mitogens resulted in interleukin-2 secretion, indicating that the low temperature block(s) is a relatively late event in cell activation.
  相似文献   

11.
Growth and dark respiration rates of the marine diatom Leptocylindrus danicus Cleve were measured in axenic batch culture under 49 combinations of temperature (5, 10, 15, 20°C), daylength(15:9, 12:12, 9:15 LD), and irradiance (at least four irradiances per daylength). Cell division rates exhibited a temperature-dependent daylength effect. Optimal temperatures occurred between 15 and 20°C. Both the initial slope () and the growth rate at light saturation (μmax) were strongly influenced by temperature; increased five-fold and μmax by an order of magnitude between 5 and 20°C. The compensation irradiance (Ic) was independent of temperature. μmax was 2.7 div day−1 at 20°C, 2.6 at 15°C, 1.1 at 10°C, and 0.3 at 5 °C. Cells grown under 15:9 and 12:12 LD exhibited similar growth-light curves at 20°C and at 15°C. μmax of cells grown under 9:15 LD at these temperatures were substantially lower than μmax under longer daylengths. Growth at 10 and 5°C was independent of daylength.

Dark respiration rates were a linear function of cell division rates at 10, 15, and 20°C, and support the concept that growth rate is dependent on dark respiration rate. These relationships were not influenced by daylength. A detectable relationship between dark respiration and growth at 5°C was not observed.

Photosynthesis and excretion showed temperature-dependent curvilinear relationships with growth rate, reflecting the lower saturation irradiance for growth compared to light saturation of photosynthesis and excretion. The relationship between Chl a-specific photosynthesis and growth was controlled by the C:Chl a ratio, which showed a positive correlation with cell division rate. At 15 and 20°C, light saturation of growth was associated with C:Chl a ratios of 40 to 60; at 5 and 10°C, cells growing at μmax contained C:Chl a in ratios of 80 to 110.  相似文献   


12.
Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae) is a koinobiont, solitary larval-pupal parasitoid of Ceratitis cosyra (Walker) (Diptera: Tephritidae), and possibly other tephritid fruit flies. The effect of temperature on developmental time and longevity of this parasitoid was investigated and the thermal requirement at six constant temperatures (15±0.5, 20±0.5, 25±0.5, 27±0.5, 30±0.5, and 33±0.05°C) and 60-70% R.H was determined. The developmental rate increased with an increase in temperature. Females took a longer time to complete development than males at all temperatures tested. Development from egg to adult emergence required 244 degree-days (DD) above a thermal threshold of 11.9°C for both sexes pooled, 233 DD above 12.0°C for males and 256 DD above 11.6°C for females. Adult longevity was affected by temperature, and females lived longer than males at all temperatures tested.  相似文献   

13.
A temperature-sensitive mutant, designated ts85, was isolated from a mouse mammary carcinoma cell line, FM3A. The ts85 cells grew at 33 °C (permissive temperature) with a doubling time of 18 h, which was almost the same as with wild-type cells, whereas the cell number scarcely increased at all at 39 °C (non-permissive temperature). When the ts85 cells were shifted from 33 to 39 °C, their DNA synthesis fell to below 1% of the initial value in 14 h. RNA or protein synthesis, however, was maintained at the initial levels for at least 14 h at 39 °C. Cytofluorometric analysis of asynchronous cultures and studies with synchronous cultures suggested that the bulk of the cells cultured at 39 °C for 12–18 h were arrested in late S and G2 phases. Electron microscopic observations revealed that chromatin was abnormally condensed into fragmented and compact forms, particularly around nucleoli, in about 80% of cells of an asynchronous culture incubated at 39 °C for 16 h. Cells in mitosis were not detected in such cultures and nuclear membrane and nucleoli were still intact. Such abnormal chromosome condensation was not observed in the ts85 cells at 33 °C or in wild-type cells at either temperature. Since these findings suggest that a ts gene product of ts85 cells is necessary for chromosome condensation, ts85 cells may represent a useful tool for establishing the mechanisms of chromosome condensation. The interrelationship between abnormal chromosome condensation and reduction in DNA synthesis of the ts85 cells is discussed.  相似文献   

14.
The parasitic mite Acarophenax lacunatus kills the eggs upon which it feeds and seems to have potential as a biological control agent of stored grain pests. The lack of biological studies on this mite species led to the present study carried out in laboratory conditions at eight different temperatures (ranging from 20 to 41°C) and 60% relative humidity using Rhyzopertha dominica as host. The higher the temperature, the faster: (1) the attachment of female mites to the host egg (varying from 1 to 5 h); (2) the increase in body size of physogastric females (about twice faster at 40°C than at 20°C); and (3) the generation time (ranging from 40 to 220 h). In addition, the higher the temperature, the shorter the maximum female longevity (ranging from about 75 to 300 h). The two estimated temperature thresholds for development of A. lacunatus on R. dominica were 18 and 40°C. The average number of female and male offspring per gravid mite were 12.8 and 1.0, respectively, with sex ratios (females/total) ranging from 0.91 to 0.94 (maximum at 30°C). The net reproductive rate and intrinsic rate of increase also presented maximum values at 30°C (12.1 and 0.04, respectively).  相似文献   

15.
Juan Carlos Argüelles   《FEBS letters》1994,350(2-3):266-270
Exponential cells of the Saccharomyces cerevisiae tps1 mutant underwent a rapid loss of viability upon a non-lethal heat exposure (from 28 to 42°C). However, a further more severe heat stress (52.5°C 5 min) induced an increase in the fraction of viable cells. This mutant can not synthesize trehalose either at 28° C or at 42°C due to the lack of a functional trehalose-6P synthase complex. In control experiments carried out with the wild-type W303-1 B, heat-stressed exponential phase cultures grown on YPgal at 28°C acquired thermotolerance to a higher extent than identical cultures grown on YPD, although in both cultures the level of stored trehalose was negligible. These data suggest that the bulk of trehalose accumulated in yeast upon mild heat treaments is not sufficient to account for the acquisition of thermotolerance.  相似文献   

16.

1. 1.|Regional differences in the frequency of electrical activity in rat epididymis were maintained at all temperatures below 39°C.

2. 2.|The change in frequency per deg C increased with temperature and was highest in the temperature region of 34–39°C and the Arrhenius plots of the frequency were linear and parallel in all parts of the epididymis.

3. 3.|The Q10 of the frequency varied between 2.2.–4.3.

4. 4.|The conduction velocity at the cauda epididymis was highest (2.8 mm/s) at 37°C. The Q10 of the conduction velocity was 2.3 in the temperature region of 24–37°C.

Author Keywords: Epididymis; smooth muscle; electrical activity; temperature; Q10  相似文献   


17.
Changes of C-550, cytochrome b559 and fluorescence yield induced in chloroplasts by single saturating flashes were studied at low temperature. A single saturating flash at −196°C was quite ineffective in reducing C-550, oxidizing cytochrome b559 or increasing the fluorescence yield, presumably because most of the charge separation induced by the flash was dissipated by a direct back reaction in the primary electron transfer couple. The back reaction, which competes with the dark reduction of the oxidized primary electron donor by a secondary electron donor, becomes increasingly important as the temperature is lowered because of the temperature coefficient of the reaction with the secondary donor. The effect of the back reaction is to lower the quantum yield for the production of stable photochemical products by steady irradiation. Assuming a quantum yield of unity for the photoreduction of C-550 at room temperature, the quantum yield for the reaction is about 0.40 at −100°C and 0.27 at −196°C.  相似文献   

18.
The effects of temperature on rates of cellulose synthesis, respiration, and long-term glucose uptake were investigated using cultured cotton ovules (Gossypium hirsutum L. cv Acala SJ1). Ovules were cultured either at constant 34°C or under cycling temperatures (12 h at 34°C/12 h at 15-40°C). Rates of respiration and cellulose synthesis at various temperatures were determined on day 21 during the stage of secondary wall synthesis by feeding cultured ovules with [14C]glucose. Respiration increased between 18 and approximately 34°C, then remained constant up to 40°C. In contrast, the rate of cellulose synthesis increased above 18°C, reached a plateau between about 28 and 37°C, and then decreased at 40°C. Therefore, the optimum temperature for rapid and metabolically efficient cellulose synthesis in Acala SJ1 is near 28°C. In ovules cycled to 15°C, respiration recovered to the control rate immediately upon rewarming to 34°C, but the rate of cellulose synthesis did not fully recover for several hours. These data indicate that cellulose synthesis and respiration respond differently to cool temperatures. The long-term uptake of glucose, which is the carbon source in the culture medium, increased as the low temperature in the cycle increased between 15 and 28°C. However, glucose uptake did not increase in cultures grown constantly at 34°C compared to those cycled at 34/28°C. These observations are consistent with previous observations on the responses of fiber elongation and weight gain to cycling temperatures in vitro and in the field.  相似文献   

19.
Safflower (Charthamus tinctorius L.) seed press cake was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 400 and 600 °C with heating rates of 10, 30 and 50 °C min−1. The obtained bio-char, gas and bio-oil yields ranged between 25 and 34 wt%, 19 and 25 wt%, and 28 and 36 wt%, respectively, at different pyrolysis conditions. The highest liquid yield was obtained at 500 °C pyrolysis temperature with a heating rate of 50 °C min−1 under the sweep gas of N2 with a flow rate of 100 cm3 min−1. Employing the higher heating rate of 50 °C min−1 results in maximum bio-oil yield, probably due to the decrease in mass transfer limitations. According to the results obtained under the conditions of this study, the effects of pyrolysis temperature and sweep gas flow rate are more significant than the effect of heating rate on the yields.  相似文献   

20.
The rate of development of Lymnaea auricularia eggs was studied at various constant temperatures between 10° and 36°C. Development was accelerated as the temperature increased and at 36°C the eggs failed to develop. Spring eggs showed differences in their rate of development when compared with summer eggs when measured at similar tempertures.

Both spring and summer eggs were more than 90% fertile. Hatching success was high at temperatures between 10° and 30° (100%–82/9%); while at 34°C it was reduced to 60.6% for spring eggs. It was above 87% at temperatures between 10° and 34°C but it dropped to 62.3% at 36°C for summer eggs.

In one regularly changing temperature experiment a significant acceleration (P < .05) was found. In two others there was no significant difference beween predicted and observed egg durations. In one suddenly changing temperature regime (1 day at 20°, 1 day at 30° and so on) a huge retardation of development was found. In the other suddenly changing experiment (1 day at 15°, 1 day at 25°) no significant difference was found.

The exposure of eggs to extreme temperature (4°C, freezing and 4°C caused a retardation in the race of subsequent development of eggs at 25°C.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号