首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antioxidative activity of hydroxylamines was evaluated for the oxidation of tetralin at 61°C and linoleic acid micelles in an aqueous dispersion at 37°C, induced by an azo initiator. The antioxidative efficacy of the hydroxylamines for the oxidation of tetralin was smaller than that of α-tocopherol. However, the hydroxylamines showed more potent antioxidative activity than that of the α-tocopherol against the oxidation of linoleic acid micelles. On the basis of the results of an ESR study and the oxidation product obtained, it is suggested that active position in hydroxylamines depend not only on hydroxyl hydrogen-atom, but also on the allylic hydrogen atom.  相似文献   

2.
We compared the antioxidative activities of seven hydrocoumarins with those of alpha-tocopherol for the oxidation of tetralin and linoleic acid in a homogeneous solution. Hydrocoumarins exhibited a higher induction period than that of alpha-Toc in both systems. However, the rate of oxygen absorption during the induction period for alpha-Toc was slower than that of the hydrocoumarins in both systems. In addition, 6,7-dihydroxy-4,4-dimethylhydrocoumarin showed less cytotoxicity toward human fibroblasts than did 2,6-di-t-butyl-4-methylphenol.  相似文献   

3.
Indolinonic hydroxylamines (IH), representing a new type of antioxidants, are comparative to alpha-tocopherol to protect lipids from oxidation. To elucidate the structure-activity relationship for IH, B3LYP/6-31G(d, p) method was employed to calculate the O-H bond dissociation enthalpy (BDE), a theoretical parameter to characterize the free radical scavenging activity. By constructing several model molecules, it was revealed that hydroxylamine was the key structural factor for this type of antioxidants, and substituents had little effect on the O-H BDE. If the =NR of IH was substituted by =O, its activity got lower.  相似文献   

4.
The dynamics of action of ubiquinol as an antioxidant against lipid peroxidation was reinvestigated and compared with that of alpha-tocopherol. It was found that ubiquinol was 2.5 and 1.9 times more reactive than alpha-tocopherol toward phenoxyl and peroxyl radicals, respectively, at 25 degrees C in ethanol and that it was capable of donating two hydrogen atoms toward oxygen radicals but that the apparent stoichiometric number decreased in the inhibition of lipid peroxidation, to even smaller than 1, due to its autoxidation. The autoxidation of ubiquinol proceeded even in the micelles and liposomal membranes in aqueous dispersions as well as in organic homogeneous solution. The apparent antioxidant activity of ubiquinol was smaller than that of alpha-tocopherol against lipid peroxidation in organic solution as judged from either rate of oxidation or duration of inhibition period. They exerted similar antioxidant potency against lipid peroxidation in the membranes and micelles in aqueous dispersions. The combination of ubiquinol and alpha-tocopherol was suggested to be effective.  相似文献   

5.
Turnera ulmifolia L. is used in Brazilian folk medicine as an anti-inflammatory. Since this activity may be correlated with the presence of antioxidant compounds, a leaf extract was evaluated for its radical scavenging capacity (RSC). The in vitro RSC of a 50% hydroethanolic (HE) extract was evaluated by beta-carotene/linoleic acid coupled oxidation system for the inhibition of oxidation and the lipid peroxidation inhibition in rat brain homogenates, using thiobarbituric acid reactive substances (TBARS) and chemiluminescence (CL). Results indicated, through peroxidation suppression, that this extract exhibited greater antioxidative activity (77.4% +/- 10%) than alpha-tocopherol (58.4% +/- 3.7%). TBARS and CL inhibition was concentration-dependent and Q(1/2) values were 8.2 and 6.0 microg/mL for TBARS and CL, respectively. For alpha-tocopherol these values were 7.1 microg/mL (TBARS) and 9.8 microg/mL (CL). Phenolic compounds may be responsible for this antioxidant capacity.  相似文献   

6.
Oxidation of hydroxylamines to nitroxide spin labels in living cells   总被引:2,自引:0,他引:2  
In the presence of oxygen, cells can oxidize hydroxylamines, which are the products of the reduction of nitroxides in cells, back to nitroxides. Lipid-soluble hydroxylamines are oxidized much more rapidly than water-soluble ones, and most of this oxidation is inactivated by heat or trichloroacetic acid, indicating that the principal mechanism is enzyme-linked. The rates of oxidation of some lipophilic hydroxylamines are comparable to the rates of reduction of the corresponding nitroxides. Hydroxylamines formed by reduction of aqueous soluble nitroxides are not oxidized by cells, except for slight oxidation of some pyrrolidine derivatives. The latter is due to autoxidation. The kinetics of oxidation of reduced lipid-soluble nitroxides are all first-order with respect to hydroxylamines, regardless of the position of the nitroxide group along the carbon backbone, indicating that the oxidation occurs within the membrane. The oxidation of hydroxylamines in cells in inhibited by cyanide but not by antimycin A or SKF-525A. We also describe an effective method to oxidize hydroxylamines and follow this reaction; the method is based on the use of perdeuterated [15N]Tempone.  相似文献   

7.
To obtain information on the role of iron-catalyzed lipid peroxidation in the presence of the small amount of lipid peroxide in deterioration of biological membranes, we examined factors affecting peroxidation of fatty acids in charged micelles. Peroxidation of linoleic acid (LA) was catalyzed by Fe2+ via reductive cleavage of linoleic acid hydroperoxide (LOOH) in negatively charged sodium dodecyl sulfate micelles, but not in positively charged tetradecyltrimethylammonium bromide (TTAB) micelles. However, this Fe2(+)-induced, LOOH-dependent lipid peroxidation could be induced in TTAB micelles in the presence of a negatively charged iron chelator, nitrilotriacetic acid (NTA). The linoleic acid alkoxy radical (LO.) generated by the LOOH-dependent Fenton reaction was also trapped by N-t-butyl-alpha-phenylnitrone at the surface of TTAB micelles in the presence of NTA, but not in its absence. The degradation rates of two spin probes, N-oxyl-4,4'-dimethyloxazolidine derivatives of stearic acid (5-NS and 16-NS), were investigated to determine the site of production of radicals formed during LOOH-dependent lipid peroxidation. The rate of consumption of 16-NS during the LOOH-dependent Fenton-like reaction was higher in TTAB micelles containing LA than in those containing lauric acid (LauA), although the rates of formation of LO. in the two types of fatty acid micelles were similar. The rates of 5-NS consumption in LA and LauA micelles were almost the same and were as low as that of 16-NS consumption in LauA micelles. 16-NS was more inhibitory than 5-NS of LOOH-dependent lipid peroxidation, and this inhibition was associated with its higher consumption of 16-NS than of 5-NS. alpha-Tocopherol inhibited NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation in TTAB micelles, and was oxidized during this inhibition process. The rate and amount of alpha-tocopherol oxidized by the LOOH-dependent Fenton reaction were higher in LA micelles than in LauA micelles. alpha-Tocopherol inhibited the consumption of 16-NS during NTA-Fe2(+)-induced LOOH-dependent lipid peroxidation more effectively than that of 5-NS. The distribution of the chromanol moiety of alpha-tocopherol was studied by the fluorescence quenching method. There was no difference between Stern-Volmer plots of the quenchings of alpha-tocopherol fluorescence by 5-NS and 16-NS. From these results, we discuss the mechanism of induction of LOOH-dependent peroxidation of LA and the mechanism of the antioxidant effects of alpha-tocopherol on it from the viewpoint of site-specific reaction.  相似文献   

8.
alpha-Tocopherol inhibited H2O2-Fe2+-induced lipid peroxidation of linoleic acid (LA) by scavenging OH radicals in tetradecyltrimethylammonium bromide (TTAB) micelles. The inhibiting ability of alpha-tocopherol was much greater than that of OH-radical scavengers mannitol and t-butanol. In contrast, alpha-tocopherol enhanced linoleic acid hydroperoxide (LOOH)-Fe2+-induced lipid peroxidation through regeneration of Fe2+ in sodium dodecyl sulfate (SDS) micelles containing LA. alpha-Tocopherol was oxidized by Fenton's reagent (FeSO4 + H2O2) at a higher rate in SDS micelles than in TTAB micelles. The likely oxidants were OH radicals in the former and Fe3+ in the latter. Both reagents formed in the Fenton reaction. Ferrous ion catalyzed in a dose-dependent manner the decomposition of LOOH and conjugated diene compounds in SDS but not in TTAB micelles. alpha-Tocopherol and Fe3+ individually had no effect on the decomposition of LOOH, but together were quite effective. The rate of the decomposition was a function of the concentration of alpha-tocopherol. The mechanism of "site-specific" antioxidant action of alpha-tocopherol in charged micelles is discussed.  相似文献   

9.
In order to verify the role played by oxidation in the budding of potato tubers (Solanum tuberosum L. cv. Kennebec), the physiological events occurring below bud at 4 degrees C have been studied for a period of 6 months. The low temperature storage induced an increase in the degree of unsaturation and a decrease in the ratio of saturated/unsaturated fatty acids of membrane polar lipids with a subsequent increase of lipid hydroperoxides (LOOH). Cold stress increased both enzymatic antioxidative activities (superoxide dismutase, SOD, E.C.1.15.1.1; catalase, CAT, E.C.1.11.1.6), and alpha-tocopherol levels thus protecting membrane's polyunsaturated lipids. Between 0 and 15 days of storage SOD/CAT ratio, alpha-tocopherol, LOOH levels and the degree of lipid unsaturation showed strong variations. After 30 to 120/150 days the antioxidative system seemed to reach a homeostasis different from that of time 0, accompanied by a constant increase of indole-3-acetic acid (IAA) after 60 days. The antioxidative system, after 150 days, lost its efficiency while LOOH levels were maintained higher than time 0 and IAA concentration was sufficient to allow sprouting.  相似文献   

10.
Cellular metabolism of proxyl nitroxides and hydroxylamines   总被引:2,自引:0,他引:2  
Previous data from model systems indicated that the proxyl nitroxides should be especially resistant to bioreduction and therefore could be an effective solution to this often problematic characteristic of nitroxides. Therefore, we investigated the rate of reduction by cells and by the usual model system, ascorbate, of four proxyl nitroxides and three reference nitroxides. We found that, while the rate of reduction by ascorbate of the proxyl nitroxides was slower than the rate of a prototypic pyrrolidine nitroxide (PCA), the reverse was true for reduction by cells. We also studied the rate of oxidation of the corresponding hydroxylamines. The rate of oxidation by cells of the proxyl hydroxylamines was relatively fast, especially for the most lipophilic derivative. These results indicate that: (i) proxyl nitroxides may not be unusually resistant to bioreduction by functional biological systems; (ii) accurate knowledge of relative rates of metabolism of nitroxides and hydroxylamines in cells and tissues will require direct studies in these systems because the rates may not closely parallel those observed in model (chemical) systems; and (iii) proxyl nitroxides show potential value as agents to measure oxygen concentrations by the rates of oxidation of their corresponding hydroxylamines.  相似文献   

11.
A by-product of rice bran oil and protein production was treated with water and compressed hot water at 20 degrees C to 260 degrees C for 5 min, and at 200 degrees C and 260 degrees C for 5 to 120 min. Each extract was evaluated for its yield, radical scavenging activity, carbohydrate, protein, total phenolic and furfural contents, molecular-mass distribution and antioxidative activity. The maximum yield was obtained at 200 degrees C. The radical scavenging activity and the protein, total phenolic and furfural contents of the extract increased with increasing temperature. However, the carbohydrate content abruptly decreased when treated at above 200 degrees C. The extract treated at 260 degrees C for 5 min exhibited suppressive activity toward the autoxidation of linoleic acid. Each extract obtained at temperatures lower than or equal to 200 degrees C exhibited emulsifying ability.  相似文献   

12.
Inhibitions of the autoxidation of linoleic acid by flavonoids in micelles.   总被引:1,自引:0,他引:1  
The activities of five flavonoids as chain-breaking antioxidants have been studied for the autoxidation of linoleic acid in cetyl trimethylammonium bromide (CTAB) micelles at 37 degrees C. Flavonols such as quercetin, rutin and morin exhibited antioxidant activities, while two flavanones, naringin and hesperidin, did not suppress the oxidation appreciably. The ratio of rate constants for inhibition and propagation kinh/kp and stoichiometric factor n were determined.  相似文献   

13.
Various phenolics and (mero)terpenoids from Helichrysum italicum subsp. microphyllum, a plant endemic to Sardinia, were investigated for their capacity to inhibit non-enzymatic lipid peroxidation. These compounds were studied in simple in vitro systems, under conditions of autoxidation and of iron (EDTA)-mediated oxidation of linoleic acid at 37 degrees C. Arzanol, a pyrone-phloroglucinol etherodimer, and helipyrone, a dimeric pyrone, showed antioxidant activity, and could protect linoleic acid against free radical attack in assays of autoxidation and EDTA-mediated oxidation. Methylarzanol, as well as the sesquiterpene alcohol rosifoliol, showed a decreased, but still significant, protective effect against linoleic acid oxidation. Arzanol and helipyrone were also tested in an assay of thermal (140 degrees C) autoxidation of cholesterol, where arzanol showed significant antioxidant activity. The cytotoxicity of arzanol was further evaluated in VERO cells, a line of fibroblasts derived from monkey kidney. Arzanol, at non-cytotoxic concentrations, showed a strong inhibition of TBH-induced oxidative stress in VERO cells. The results of the present work suggest that the natural compound arzanol exerts useful antioxidant properties in different in vitro systems of lipid peroxidation.  相似文献   

14.
Antioxidative activities of aroma extracts isolated from natural plants   总被引:1,自引:0,他引:1  
Natural leaves and flowers containing numerous aroma chemicals are widely used in aromatherapy since ancient times. In addition to their pleasant smells, aroma chemicals might have some beneficial health effects. Aroma extracts, isolated from coffee beans, soybeans, and mung beans by steam distillation under mild conditions (55 degrees C and 85 mm Hg) were examined for their antioxidative activities. The inhibitory effect of these extracts toward hexanal/hexanoic acid conversion was measured in the testing solution over prolonged time periods. The inhibitory effects of these extracts toward malonaldehyde formation from lipids oxidized by Fenton's reagent were also measured. The antioxidative activity of these extracts, in particular coffee bean extract, was consistent with that of BHT or alpha-tocopherol (vitamin E). Soybeans and mung beans extract contained maltol, which inhibits hexanal oxidation significantly. Eugenol, which is one of the major constituents of mung bean extract, exhibited potent antioxidative activity in an aldehyde/carboxylic acid assay. Antioxidants such as eugenol and maltol may play an important role in the pharmaceutical activities of natural plant extracts used for aromatherapy.  相似文献   

15.
The kinetic studies on the actions of quinolinic and indolinonic aminoxyls in the oxidation of lipid peroxidation induced by free radicals were carried out to evaluate their antioxidant activity. These aminoxyls showed a similar reactivity toward peroxyl radical with alpha-tocopherol. The antioxidant efficacies of aminoxyls against oxidation of methyl linoleate in homogeneous solution were smaller than that of alpha-tocopherol. Hydroxylamine, a reduced form of aminoxyl, possessed a comparative antioxidant efficacy with alpha-tocopherol and was capable of suppressing the consumption of alpha-tocopherol. Aminoxyls showed more potent antioxidant activity than alpha-tocopherol against the oxidation of methyl linoleate micelles induced by peroxyl radical or by a combination of copper ion and hydrogen peroxide. These results suggest that quinolinic and indolinonic aminoxyls may act as potent antioxidants against lipid peroxidation, especially in the presence of a good reductant which reduces aminoxyl radicals to hydroxylamines.  相似文献   

16.
The antioxidant activity of several phenolic compounds has been evaluated in terms of the inhibition of the lipid oxidation. The extent of linoleic acid oxidation was monitored by the absorption of the conjugated diene hydroperoxydes formed as a result of oxidation. The antioxidant activity of phenolic compounds was evaluated in aqueous media consisting of negatively-charged micelles of sodium dodecyl sulfate (SDS) or positively-charged micelles of hexadecyl trimethylammonium bromide (HDTBr). 2,2′-azobis-(2-amidinopropane)-dihydrochloride (ABAP) was employed as the oxidation initiator. The assayed phenolic compounds showed good antioxidant efficiency, closely related to the presence of hydroxyl groups and the electron delocalization within the structure, which may stabilize the formed phenoxyl radicals. The kinetic analysis revealed that the oxidizability of linoleic acid was 10-fold higher in SDS than in HDTBr media, which could indicate that oxidation is favoured in negatively charged SDS micelles regarding to positive HDTBr medium. Furthermore, a greater antioxidant efficiency of phenolic compounds was found in HDTBr than in SDS micelles.  相似文献   

17.
Soluble soybean polysaccharide (SSPS) was fractionated into its low- (LMW) and high-molecular-weight (HMW) components to test their antioxidative and emulsifying properties. Linoleic acid was emulsified with an aqueous solution of SSPS, HMW, a mixture of LMW or HMW with maltodextrin, or maltodextrin alone. The emulsions prepared with SSPS, HWM and the mixture of HMW with maltodextrin were stable. These emulsions were spay-dried to produce microcapsules. The encapsulated linoleic acid was oxidized at 37°C and at various levels of relative humidity. Linoleic acid encapsulated with the mixture of LMW with maltodextrin or HMW was stable to oxidation, and this stability increased as the weight fraction of LMW in the mixture was increased. The LMW components also had high DPPH-radical scavenging activity. These results indicate that LMW played an important role in suppressing or retarding the oxidation of linoleic acid encapsulated with SSPS. The oxidative stability of linoleic acid encapsulated with a mixture of the LMW and HMW components was high at low and high relative humidity, but not at intermediate levels of relative humidity.  相似文献   

18.
Glycosylated ascorbic acids were synthesized by using the transglycosylation activity of Bacillus stearothermophilus maltogenic amylase with maltotriose to show effective antioxidative activity with enhanced oxidative stability. The modified ascorbic acids comprised mono- and di-glycosyl transfer products with an alpha-(1,6)-glycosidic linkage. The antioxidative effects of the glycosyl derivatives of ascorbic acid on the lipid oxidation of cooked chicken breast meat patties were compared, and the synergistic effect when combined with alpha-tocopherol was determined in terms of thiobarbituric acid-reactive substances (TBARS) and volatiles production during storage. The results indicate that the glycosylated ascorbic acids had very effective antioxidative activity in preventing lipid oxidation, and were better in their synergistic effect in comparison to authentic ascorbic acid, with maltosyl-ascorbic acid being the most effective. Volatiles production was highly correlated with the TBARS values in the lipid oxidation of cooked meat. The antioxidative effect preventing the production of volatiles was particularly strong on pentanal, fairly strong on propanal and butanal, and not at all on ethanal. Propanal, pentanal, and the total volatiles thus provided a good representation of the lipid oxidation status of cooked chicken meat.  相似文献   

19.
Soluble soybean polysaccharide (SSPS) was fractionated into its low- (LMW) and high-molecular-weight (HMW) components to test their antioxidative and emulsifying properties. Linoleic acid was emulsified with an aqueous solution of SSPS, HMW, a mixture of LMW or HMW with maltodextrin, or maltodextrin alone. The emulsions prepared with SSPS, HWM and the mixture of HMW with maltodextrin were stable. These emulsions were spay-dried to produce microcapsules. The encapsulated linoleic acid was oxidized at 37 degrees C and at various levels of relative humidity. Linoleic acid encapsulated with the mixture of LMW with maltodextrin or HMW was stable to oxidation, and this stability increased as the weight fraction of LMW in the mixture was increased. The LMW components also had high DPPH-radical scavenging activity. These results indicate that LMW played an important role in suppressing or retarding the oxidation of linoleic acid encapsulated with SSPS. The oxidative stability of linoleic acid encapsulated with a mixture of the LMW and HMW components was high at low and high relative humidity, but not at intermediate levels of relative humidity.  相似文献   

20.
Carotenoid extract from ripe tomato fruit was subjected to a lipoxygenase-catalysed co-oxidation in the presence of vitamin C and vitamin E at different concentrations. Relative retention (%) of major carotenoids by the experimental mixture was used as an index of their degradation and interaction with the antioxidants. Oxidation-prevention activity of each antioxidant against pigment co-oxidation as impacted by their molar concentration was studied. beta-Carotene was found to be the most sensitive pigment, followed by lycoxanthin and lycopene. Ascorbic acid when added in the range of 0-1.8 mM interacted with the different carotenoids by different modes. Evidence was given on regeneration, by ascorbic acid, of lycopene during the course of co-oxidation. The concentration required for alpha-tocopherol acetate to exhibit antioxidative effect was 10 times higher than that of ascorbic acid. beta-Carotene was prevented, by alpha-tocopherol acetate, faster than lycoxanthin and lycopene. The latter carotenoids differed substantially in their interaction with the lipophilic antioxidant at only the lowest concentration (0.3 mM). It was established that under the given conditions there is no synergism between vitamin C and vitamin E that improves their oxidation prevention against co-oxidation of carotenoids. Moreover, the combined use of antioxidants caused more oxidative degradation of beta-carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号