首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Objective

To investigate the redirection of lymphatic drainage post-lymphadenectomy using non-invasive near-infrared fluorescence (NIRF) imaging, and to subsequently assess impact on metastasis.

Background

Cancer-acquired lymphedema arises from dysfunctional fluid transport after lymphadenectomy performed for staging and to disrupt drainage pathways for regional control of disease. However, little is known about the normal regenerative processes of the lymphatics in response to lymphadenectomy and how these responses can be accelerated, delayed, or can impact metastasis.

Methods

Changes in lymphatic “pumping” function and drainage patterns were non-invasively and longitudinally imaged using NIRF lymphatic imaging after popliteal lymphadenectomy in mice. In a cohort of mice, B16F10 melanoma was inoculated on the dorsal aspect of the paw 27 days after lymphadenectomy to assess how drainage patterns affect metastasis.

Results

NIRF imaging demonstrates that, although lymphatic function and drainage patterns change significantly in early response to popliteal lymph node (PLN) removal in mice, these changes are transient and regress dramatically due to a high regenerative capacity of the lymphatics and co-opting of collateral lymphatic pathways around the site of obstruction. Metastases followed the pattern of collateral pathways and could be detected proximal to the site of lymphadenectomy.

Conclusions

Both lymphatic vessel regeneration and co-opting of contralateral vessels occur following lymphadenectomy, with contractile function restored within 13 days, providing a basis for preclinical and clinical investigations to hasten lymphatic repair and restore contractile lymphatic function after surgery to prevent cancer-acquired lymphedema. Patterns of cancer metastasis after lymphadenectomy were altered, consistent with patterns of re-directed lymphatic drainage.  相似文献   

2.
The lymphatic vasculature transports extravasated tissue fluid, macromolecules and cells back into the blood circulation. Recent reports have focused on the molecular mechanisms regulating the lymphatic vessels. Vascular endothelial growth factor (VEGF)-C and VEGF-D have been shown to stimulate lymphangiogenesis and their receptor, VEGFR-3, has been linked to human hereditary lymphedema. Here we show that a soluble form of VEGFR-3 is a potent inhibitor of VEGF-C/VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal. Transgenic mice develop a lymphedema-like phenotype characterized by swelling of feet, edema and dermal fibrosis. They survive the neonatal period in spite of a virtually complete lack of lymphatic vessels in several tissues, and later show regeneration of the lymphatic vasculature, indicating that induction of lymphatic regeneration may also be possible in humans.  相似文献   

3.
Secretory dynamics of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured at various times following gonadectomy in adult male grass frogs, Rana pipiens. Plasma levels and in vitro initial secretory rates of both LH and FSH increased significantly within 1 wk and remained elevated for 3-4 wk of castration. Pituitary FSH and LH content were unchanged. However, dissociation between the two gonadotropins (Gth) occurred thereafter: Secretion of FSH remained elevated for 70 days, but those of LH declined to control levels after 30 days. In vitro secretion of Gth from gonadectomized (gonadx) frogs declined progressively over time reaching control levels after 24 h incubation. The results indicate that elevated pituitary secretion contributes to the observed circulating LH and FSH levels in gonadx frogs, and that FSH and LH may be controlled independently. Replacement therapy with 17 beta-estradiol (E2) suppressed post-gonadectomy increases in plasma Gth and in vitro responses to GnRH, whereas 5 alpha-dihydrotestosterone (DHT) had little effect in vivo and augmented GnRH responses in long-term castrates. In vitro, E2 also inhibited, while 48 h of DHT treatment had no effect on GnRH responsiveness of pituitaries from gonadx frogs. The actions of these steroids were opposite to those typically observed in mammals (and birds), and support the hypothesis that E2 may contribute to seasonal testicular regression in ranid frogs.  相似文献   

4.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

5.

Introduction

Lymphedema is the chronic swelling of an extremity that occurs commonly after lymph node resection for cancer treatment. Recent studies have demonstrated that transfer of healthy tissues can be used as a means of bypassing damaged lymphatics and ameliorating lymphedema. The purpose of these studies was to investigate the mechanisms that regulate lymphatic regeneration after tissue transfer.

Methods

Nude mice (recipients) underwent 2-mm tail skin excisions that were either left open or repaired with full-thickness skin grafts harvested from donor transgenic mice that expressed green fluorescent protein in all tissues or from LYVE-1 knockout mice. Lymphatic regeneration, expression of VEGF-C, macrophage infiltration, and potential for skin grafting to bypass damaged lymphatics were assessed.

Results

Skin grafts healed rapidly and restored lymphatic flow. Lymphatic regeneration occurred beginning at the peripheral edges of the graft, primarily from ingrowth of new lymphatic vessels originating from the recipient mouse. In addition, donor lymphatic vessels appeared to spontaneously re-anastomose with recipient vessels. Patterns of VEGF-C expression and macrophage infiltration were temporally and spatially associated with lymphatic regeneration. When compared to mice treated with excision only, there was a 4-fold decrease in tail volumes, 2.5-fold increase in lymphatic transport by lymphoscintigraphy, 40% decrease in dermal thickness, and 54% decrease in scar index in skin-grafted animals, indicating that tissue transfer could bypass damaged lymphatics and promote rapid lymphatic regeneration.

Conclusions

Our studies suggest that lymphatic regeneration after tissue transfer occurs by ingrowth of lymphatic vessels and spontaneous re-connection of existing lymphatics. This process is temporally and spatially associated with VEGF-C expression and macrophage infiltration. Finally, tissue transfer can be used to bypass damaged lymphatics and promote rapid lymphatic regeneration.  相似文献   

6.
7.
The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development.  相似文献   

8.
9.
The complement system, especially the alternative pathway, plays essential roles in the induction of injury in collagen Ab-induced arthritis (CAIA) in mice. The goal of the current study was to directly compare the roles of receptors for C3a and C5a, as well as the membrane attack complex, as effector mechanisms in the pathogenesis of CAIA. Clinical disease activity in C3aR(-/-), C5aR(-/-), and C6-deficient (C6-def) mice was decreased by 52, 94, and 65%, respectively, as compared with wild-type mice. Decreases in histopathologic injury as well as in IgG and C3 deposition paralleled the clinical disease activity. A decrease in the percentage of synovial neutrophils was observed in C3aR(-/-), C5aR(-/-), and C6-def mice, and a decrease in macrophages was observed in C3aR(-/-) and C5aR(-/-), but not in C6-def, mice. Synovial mRNA obtained by laser capture microdissection exhibited a decrease in TNF-α in C5aR(-/-) mice and in IL-1β in both C5aR(-/-) and C6-def mice, whereas C3aR(-/-) mice demonstrated no change in either cytokine. Our findings show that absent C3aR-, C5aR-, or membrane attack complex-initiated effector mechanisms each decrease susceptibility to CAIA, with clinical effects most pronounced in C5aR-deficient mice. Although the absence of C3aR, C5aR, or C6 led to differential deficiencies in effector mechanisms, decreased proximal joint IgG and C3 deposition was common to all three genotypes in comparison with wild-type mice. These data suggest the existence of positive-feedback amplification pathways downstream of all three effectors that promote additional IgG deposition and C3 activation in the joint.  相似文献   

10.
This study aimed to investigate the mechanisms that coordinate lymphangiogenesis. Using mouse models of lymphatic regeneration and inflammatory lymphangiogenesis, we explored the hypothesis that hypoxia inducible factor-α (HIF-1α) is a central regulator of lymphangiogenesis. We show that HIF-1α inhibition by small molecule inhibitors (YC-1 and 2-methyoxyestradiol) results in delayed lymphatic repair, decreased local vascular endothelial growth factor-C (VEGF-C) expression, reduced numbers of VEGF-C(+) cells, and reductions in inflammatory lymphangiogenesis. Using transgenic HIF-1α/luciferase mice to image HIF-1α expression in real time in addition to Western blot analysis and pimonidazole staining for cellular hypoxia, we demonstrate that hypoxia stabilizes HIF-1α during initial stages of wound repair (1-2 wk); whereas inflammation secondary to gradients of lymphatic fluid stasis stabilizes HIF-1α thereafter (3-6 wk). In addition, we show that CD4(+) cell-mediated inflammation is necessary for this response and regulates HIF-1α expression by macrophages, as CD4-deficient or CD4-depleted mice demonstrate 2-fold reductions in HIF-1α expression as compared to wild-types. In summary, we show that HIF-1α is a critical coordinator of lymphangiogenesis by regulating the expression of lymphangiogenic cytokines as part of an early response mechanism to hypoxia, inflammation, and lymphatic fluid stasis.  相似文献   

11.
1. The aim of the present experiments was to examine the question whether the rat atrial natriuretic factor (rANF 1-28) could alter the fractional excretion of sodium (FENa) and other solutes in the frog (Rana esculenta). 2. Although experiments were performed throughout the year possible seasonal changes in the animals were considered in particular. 3. In all frogs, a hypotonic diuresis was induced. 4. Under these conditions in winter frogs, the control FENa was 8.8 +/- 5.8% (15) [means +/- SD (n)], and during rANF administration 7.7 +/- 6.6% (13) (NS). 5. In summer frogs, the control and experimental FENa was 5.2 +/- 2.8% (5) and 6.0 +/- 2.5% (5), respectively (NS). 6. These results show that there was no significant effect of this polypeptide on the fractional excretion of sodium in the frog.  相似文献   

12.
Molecular mechanisms regulating the remodeling of the lymphatic vasculature from an immature plexus of vessels to a hierarchal network of initial and collecting lymphatics are not well understood. One gene thought to be important for this process is Angiopoietin-2 (Ang-2). Ang2−/− mice have previously been reported to exhibit an abnormal lymphatic phenotype but the precise nature of the lymphatic defects and the underlying mechanisms have yet to be defined. Here we demonstrate by whole-mount immunofluorescence staining of ear skin and mesentery that lymphatic vessels in Ang2−/− mice fail to mature and do not exhibit a collecting vessel phenotype. Furthermore, dermal lymphatic vessels in Ang2−/− pups prematurely recruit smooth muscle cells and do not undergo proper postnatal remodeling. In contrast, Ang2 knock-out Ang1 knock-in mice do develop a hierarchal lymphatic vasculature, suggesting that activation of Tie-2 is required for normal lymphatic development. Taken together, this work pinpoints a specific lymphatic defect of Ang2−/− mice and further defines the sequential steps in lymphatic vessel remodeling.  相似文献   

13.
The dried sap of the aloe plant (aloes) is one of several traditional remedies used for diabetes in the Arabian peninsula. Its ability to lower the blood glucose was studied in 5 patients with non-insulin-dependent diabetes and in Swiss albino mice made diabetic using alloxan. During the ingestion of aloes, half a teaspoonful daily for 4-14 weeks, the fasting serum glucose level fell in every patient from a mean of 273 +/- 25 (SE) to 151 +/- 23 mg/dl (p less than 0.05) with no change in body weight. In normal mice, both glibenclamide (10 mg/kg twice daily) and aloes (500 mg/kg twice daily) induced hypoglycaemia after 5 days, 71 +/- 6.2 and 91 +/- 7.6 mg/dl, respectively, versus 130 +/- 7 mg/dl in control animals (p less than 0.01); only glibenclamide was effective after 3 days. In the diabetic mice, fasting plasma glucose was significantly reduced by glibenclamide and aloes after 3 days. Thereafter only aloes was effective and by day 7 the plasma glucose was 394 +/- 22.0 versus 646 +/- 35.9 mg/dl, in the controls and 726 +/- 30.9 mg/dl in the glibenclamide treated group (p less than 0.01). We conclude that aloes contains a hypoglycaemic agent which lowers the blood glucose by as yet unknown mechanisms.  相似文献   

14.
The cholinolytic effect of sydnophen discovered in earlier anesthetized cats was confirmed on unanesthetized fish and frogs: the vagal bradycardia induced by electric stimulation of peripheral vagal end was decreased or even abolished by intravenous injection of sydnophen (0.2-20 mg/kg). The amphetamine (0.2-30 mg/kg) also blocked the vagal bradycardia in anesthetized cats and unanesthetized frogs. The maximum vagolytic action of amphetamine appeared later (in 4-8 min after injection) in compared with sydnophen (1-3 min). The small dose of amphetamine (0.2-0.3 mg/kg) in contrast to sydnophen didn't decrease the vagal bradycardia but even increased it. It was suggested that the cholinolytic effect of sydnophen and amphetamine is due to different mechanisms.  相似文献   

15.
The effect of exposure to low temperatures (5 °C) on lymphocyte proliferation, leukocyte populations, and serum complement levels was examined in the northern leopard frog, Rana pipiens. Proliferation of T lymphocytes in response to phytohemagglutinin stimulation was significantly decreased in frogs kept for 2, 3, and 5 months at 5 °C compared to that of animals kept at 22 °C. A significant increase in the average percentage of neutrophils and a decrease in the mean percentage of eosinophils was observed in the blood of frogs held for 5 months in the cold compared to animals held at 22 °C for the same length of time. Mean serum complement activity after 1 month at 5 °C was significantly reduced in comparison to animals held at 22 °C and was not detectable after 5 months in the cold. Recovery of complement levels at room temperature (22 °C) was also examined after cold exposure. Complement levels were significantly higher than controls (at 22 °C) in frogs returned to 22 °C for 7 and 14 days after 5 months in the cold. After frogs were held at 5 °C for 1 month, serum complement levels increased significantly within 2 days after returning to 22 °C and continued to rise 5 and 9 days after warming. Injections with Aeromonas hydrophila following a 5-week exposure to 5 °C failed to cause death or observable symptoms of disease in frogs that were returned to 22 °C. Accepted: 20 November 1996  相似文献   

16.
The prolonged effect of thyroliberin in ULD after single intramuscular injection on contractility of lymphatic vessels directly was investigated. The controlled group of animals received injection of 0.2 ml of physiological solution. The experimental group was injected by 0.2 ml of thyroliberin in concentrations of 10(-10) or 10(-16) mol/l (1 x 10(-4) and 1 x 10(-10) micrograms/kg of the body weight respectively). During the experiment the animals were grouped in the following way: 1) directly after the injection; 2) 3 hours later; 3) on the 1st day and then every day during 2 weeks. Lymphatic vessels reactivity of the experimental animals as well as controlled was studied by application of thyroliberin and noradrenalin (in concentrations of 1 x 10(-16) and 1 x 10(-6) mol/l respectively) directly on mesentery lymphatic vessels. The lymphatic vessels reaction in control group of animals on the noradrenalin and thyroliberin was the same during the period of observation. Thyroliberin stimulated contractility at concentration of 1 x 10(-16) mol/l. The reaction of experimental group was dramatically decreased to 10(-4) mol/l on the 1st and the 3rd day (in the case i.m. injected concentration 1 x 10(-10) mol/l) and to 10(-10) mol/l (in the case of i.m. injected concentration 10(-16) mol/l). The lymphatic vessels reactivity to exogenous thyroliberin gradually established at the 6-7th days till 12th day from the moment of thyroliberin injection. The mechanisms of the action of thyroliberin in ULD are discussed.  相似文献   

17.
Lymphangiogenesis is possibly capable of attenuating hypertension-induced cardiac injury. Sirtuin 3 (SIRT3) is an effective mitochondrial deacetylase that has the potential to modulate this process; however, its role in hypertension-induced cardiac lymphangiogenesis to date has not been investigated. Our experiments were performed on 8-week-old wild-type (WT), SIRT3 knockout (SIRT3-KO) and SIRT3 overexpression (SIRT3-LV) mice infused with angiotensin II (Ang II) (1000 ng/kg per minute) or saline for 28 days. After Ang II infusion, SIRT3-KO mice developed a more severe cardiac remodelling, less lymphatic capillaries and lower expression of lymphatic marker when compared to wild-type mice. In comparison, SIRT3-LV restored lymphangiogenesis and attenuated cardiac injury. Furthermore, lymphatic endothelial cells (LECs) exposed to Ang II in vitro exhibited decreased migration and proliferation. Silencing SIRT3 induced functional decrease in LECs, while SIRT3 overexpression LECs facilitated. Moreover, SIRT3 may up-regulate lymphangiogenesis by affecting vascular endothelial growth factor receptor 3 (VEGFR3) and ERK pathway. These findings suggest that SIRT3 could promote lymphangiogenesis and attenuate hypertensive cardiac injury.  相似文献   

18.
A study was carried out to compare the androgen formation activity of gonadotropins from diverse vertebrate species by rooster and mouse testes in vitro. The dispersed testicular interstitial cells from 6- to 7-wk-old mice or testicular slices from 3- to 4-mo-old roosters were incubated with varying doses of luteinizing hormones (LHs)/gonadotropins (GTHs) in Medium 199 containing isobutyl-methyl-xanthine and N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid buffer (pH 7.4) at 34 degrees C (mice) or 37 degrees C (roosters) for 4 hr under continuous aeration of 95% O2-5% CO2 in a Dubnoff incubator shaken at 100 cycles/min. Androgen in the medium was measured by radioimmunoassay. The results revealed that dose-related androgen formations were obtained both in rooster and mouse systems in response to stimulations of all LHs/GTHs tested. The mouse system was more responsive to mammalian LHs and placental GTHs, less responsive to LHs from chickens, frogs, and turtles, and extremely unresponsive to piscine GTHs. In contrast, the rooster system was highly responsive to LHs from both mammals and chickens in androgen formation; it was also responsive to LHs from turtles and frogs as well as to piscine GTHs, although with relatively lower sensitivity. The rooster testis system is thus suitable for in vitro bioassay of LHs/GTHs from virtually all vertebrate classes, whereas the mouse testis system is more suitable for bioassay of mammalian LHs and placental GTHs. The differential androgen formation potencies of the diverse vertebrate GTHs in testis systems between roosters and mice indicate that a divergence exists in the testicular receptors between the two animal species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.  相似文献   

20.
The emerging amphibian disease chytridiomycosis, which is caused by the fungal pathogen (Batrachochytrium dendrobatidis, Bd), has caused mass mortalities of native amphibian populations globally. There have been no previous studies on the relationships between stress hormones in free-living amphibians and Bd infections. In this study, we measured urinary corticosterone metabolite concentrations and Bd infections within free-living populations of male Stony Creek frog (Litoria wilcoxii) in Queensland, Australia. Prevalence of Bd zoospores from frog skin swabs was quantified using a real-time quantitative PCR technique. A urinary corticosterone enzyme-immunoassay (EIA) was validated using adrenocorticotropic hormone (ACTH) challenge. Urinary corticosterone concentrations of male frogs increased within 1-2 days after ACTH challenge and returned to baseline levels within 3 days post-ACTH injection. None of the frogs showed any rise in urinary corticosterone after saline injections. Individual male frogs showed either low or high baseline corticosterone concentrations. Male frogs identified as positive for Bd infection had significantly higher baseline urinary corticosterone concentrations in comparison to Bd negative male frogs. Urinary corticosterone EIA provides a reliable indication of stress in this frog species and this non-invasive physiological tool can be used to further assess the dynamics of Bd infections and physiological stress responses in other native amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号