首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yi C  Xie K  Song F  Yu L  Zhao X  Li G  Yu S 《Neurochemical research》2006,31(6):751-757
Acrylamide (ACR) is a known industrial neurotoxic chemical that can induce neurodegeneration. Cytoskeletal protein aggregation is a pathological hallmark of neurodegenerative disorders. This study was an initial exploration on cytoskeletal proteins in plasma as potential biomarkers of ACR neurotoxicity. Low and high ACR groups received 20 mg/kg and 40 mg/kg ACR by intraperitoneal injection in adult Wistar rats and control group received physiological saline. Rats were all killed after 8 weeks to evaluate the levels of neurofilament(NF)-L, NF-M, NF-H, β-actin, α-tubulin, β-tubulin, tau, MAP2 proteins in plasma using both SDS-PAGE and western blotting. Compared with the control, the levels of NF-L, NF-M, NF-H, β-actin, tau, MAP2 proteins decreased and the level of α-tubulin increased in high ACR group, the levels of α-tubulin, β-tubulin and MAP2 increased in low ACR group. The results suggested that the changes of these proteins might be relevant to the neurotoxicity of ACR. Some of the cytoskeletal proteins in plasma might be used as marker of biological effect in ACR induced neuropathy.  相似文献   

2.
Neurochemical Research - Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study...  相似文献   

3.
Microbial degradation of acrylamide monomer   总被引:3,自引:0,他引:3  
Acrylamide, a neurotoxic monomer with extensive industrial applications was found to be degraded by the microorganisms present in a tropical garden soil. A bacterium capable of degrading acrylamide was isolated from this soil by enrichment. It was found to be aerobic, gram-negative, motile, short rod and identified as Pseudomonas sp. The bacterium degraded high concentrations of acrylamide (4 g/l) to acrylic acid and ammonia which were utilized as sole carbon and nitrogen source for growth. An amidase was involved in the hydrolysis of acrylamide, which could act on other short chain amides like formamide and acetamide but not on acrylamide analogues: methacrylamide and N,N-methylene bis-acrylamide. The enzyme was sensitive to catabolite repression by succinate both in presence as well as absence of nitrogen source.Abbreviations Acrylamide (ACR) High Performance Liquid Chromatography (HPLC)  相似文献   

4.
Acrylamide (ACR), used in many fields from industrial manufacturing to laboratory personnel work is also formed during the heating process through interactions of amino acids. Therefore ACR poses a significant risk to human health. This study aimed to elucidate whether resveratrol (RVT) treatment could modulate ACR-induced oxidative DNA damage and oxidative changes in rat brain, lung, liver, kidney and testes tissues. Rats were divided into four groups as control (C); RVT (30 mg/kg i.p. dissolved in 0.9% NaCl), ACR (40 mg/kg i.p.) and RVT + ACR groups. After 10 days rats were decapitated and tissues were excised. 8-hydroxydeoxyguanosine (8-OHdG) is a biomarker of oxidative DNA damage. 8-OHdG content in the extracted DNA solution was determined by enzyme-linked immunosorbent assay method. Malondialdehyde (MDA), glutathione (GSH) levels and myeloperoxidase activity (MPO) were determined in tissues, while oxidant-induced tissue fibrosis was determined by collagen contents. Serum enzyme activities, cytokine levels, leukocyte apoptosis were assayed in plasma. As an indicator of oxidative DNA damage, 8-OHdG levels significantly increased in ACR group and this was reversed significantly by RVT treatment. In ACR group, GSH levels decreased significantly while the MDA levels, MPO activity and collagen content increased in the tissues suggesting oxidative organ damage. In RVT-treated ACR group, oxidant responses reversed significantly. Serum enzyme activities, cytokine levels and leukocyte late apoptosis which increased following ACR administration, decreased with RVT treatment. Therefore supplementing with RVT can be useful in individuals at risk of ACR toxicity.  相似文献   

5.
Acrylamide (ACR), a potent neurotoxin, can be produced during food processing at high temperature. This study examined the redox-dependent apoptotic and inflammatory responses of ACR in an immortalized mouse microglia cell line BV2. The exposure of BV2 cells to ACR reduced cell viability and induced apoptosis in a concentration-dependent manner. ACR impaired cell energy metabolism by decreasing mitochondrial respiration, anaerobic glycolysis, and lowering expression of the complex I, III, and IV subunits. Mitochondrial dysfunction was associated with a decrease of the mitochondrial membrane potential and the Bcl-2/Bax ratio, thus resulting in activation of the mitochondrion-driven apoptotic signaling. This was accompanied by (a) the modulation of redox-sensitive signaling, suppressed Akt activation and increased JNK and p38 activation, and (b) increased expression of NFκB and downstream inducible nitric oxide synthase (iNOS) and nitric oxide generation, thus supporting indirectly a proinflammatory effect of ACR. Nrf2 expression was also increased but not its translocation to the nucleus. Expectedly, the electrophilic attack of ACR on GSH resulted in substantial loss of GSH with a minor GSSG formation. These changes in the cell׳s redox status elicited by ACR resulted in increased H2O2 formation. The changes in mitochondrial functionality and complex subunit expression caused by ACR were reversed by N-acetyl-L-cysteine (NAC). Likewise, NAC restored the cell׳s redox status by increasing GSH levels with concomitant attenuation of H2O2 generation; these effects resulted in decreased apoptotic cell death and inflammatory responses. ACR-mediated mitochondrial dysfunction along with a more oxidized redox status seems to be critical events leading to activation of the intrinsic apoptotic pathway and inflammatory responses.  相似文献   

6.
丙烯酰胺神经系统毒性机制   总被引:1,自引:0,他引:1  
丙烯酰胺(acrylamide,ACR)是公认的神经、致癌、遗传和雄性生殖毒物。高温(120 oC)烹饪富含淀粉食物会产生ACR及致癌性已在近年引起世界卫生组织(WHO)和联合国粮农组织(FAO)的关注,本文就ACR的性质、危害、代谢、对神经行为的影响和神经毒性机制的研究状况方面进行综述,以期为ACR对神经系统毒性作用的特点、机制及危险度评定和防治提供科学依据。  相似文献   

7.
Acrylamide (ACR) is a chemical compound with severe neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. Recent studies showed that ACR impairs the function of reproductive organs, e.g., epididymis and testes. In vitro maturation of mouse oocyte is a sensitive assay to identify potential chemical hazard to female fertility. The aim of this study was to evaluate the adverse effects of ACR on the nuclear maturation and cumulus cells apoptosis of mouse oocytes in vitro. Cumulus–oocyte complexes were incubated in a maturation medium containing 0, 5, 10 and 20 μM of ACR. Chromosome alignment and spindle morphology of oocytes was determined by immunofluorescence and confocal microscopy. Our results showed that oocytes exposed to different doses of ACR in vitro were associated with a significant decrease of oocyte maturation, significant increase of chromosome misalignment rate, occurrence of abnormal spindle configurations, and the inhibition of oocyte parthenogenetic activation. Furthermore, apoptosis of cumulus cells was determined by TUNEL and CASPASE-3 assay. Results showed that apoptosis in cumulus cells was enhanced and the expression of CASPASE-3 was increased after cumulus–oocyte complexes were exposed to ACR. Therefore, ACR may affect the nuclear maturation of oocytes via the apoptosis of cumulus cells in vitro.  相似文献   

8.
Yan  Dandan  Wang  Na  Yao  Jianling  Wu  Xu  Yuan  Jingping  Yan  Hong 《Neurochemical research》2022,47(4):1037-1048
Neurochemical Research - Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity...  相似文献   

9.
Acrylamide (ACR) is a potent neurotoxic in human and animal models. In this study, the effect of crocin, main constituent of Crocus sativus L. (Saffron) on ACR-induced cytotoxicity was evaluated using PC12 cells as a suitable in vitro model. The exposure of PC12 cells to ACR reduced cell viability, increased DNA fragmented cells and phosphatidylserine exposure, and elevated Bax/Bcl-2 ratio. Results showed that ACR increased intracellular reactive oxygen species (ROS) in cells and ROS played an important role in ACR cytotoxicity. The pretreatment of cells with 10–50 μM crocin before ACR treatment significantly attenuated ACR cytotoxicity in a dose-dependent manner. Crocin inhibited the downregulation of Bcl-2 and the upregulation of Bax and decreased apoptosis in treated cells. Also, crocin inhibited ROS generation in cells exposed to ACR. In conclusion, our results indicated that pretreatment with crocin protected cells from ACR-induced apoptosis partly by inhibition of intracellular ROS production.  相似文献   

10.
Host-specific toxin from the rough lemon (Citrus jambhiri Lush) pathotype of Alternaria alternata (ACR toxin) was tested for effects on mitochondria isolated from several citrus species. The toxin caused uncoupling of oxidative phosphorylation and changes in membrane potential in mitochondria from leaves of the susceptible host (rough lemon); the effects differed from those of carbonylcyanide-m-chlorophenylhydrazone, a typical protonophore. ACR toxin also inhibited malate oxidation, apparently because of lack of NAD+ in the matrix. In contrast, the toxin had no effect on mitochondria from citrus species (Dancy tangerine and Emperor mandarin [Citrus reticulata Blanco], and grapefruit [Citrus paradisi Macf.]) that are not hosts of the fungus. The effects of the toxin on mitochondria from rough lemon are similar to the effects of a host-specific toxin from Helminthosporium maydis (HMT) on mitochondria from T-cytoplasm maize. Both ACR and HMT toxins are highly selective for the respective host plants. HMT toxin and methomyl had no effect (toxic or protective) on the activity of ACR toxin against mitochondria from rough lemon.  相似文献   

11.
The fine structure of trophozoites and especially of merozoites of Babesia herpailuri is described before and after treatment with Imidocarb (Wellcome). The mostly piriform to oval merozoites possess an outer membrane and a supporting membrane below. The intratorium consists of a polar ring, rhoptries micronemes and the sperical body which lies beside the big nucleus and next to mitochondria. The endoplasmic reticulum and invaginations are not clearly formed. The cellular changes of Babesia herpailuri, observed one hour after drug treatment in trophozoites and six hours later in merozoites, concern the form and function of the parasite: widening of the subpellicular endoplasmic reticulum and of the perinuclear space; sporadic dilatation of the endoplasmic reticulum of the merozoites (9 fig.). Damaged membranes, dissolution of the cellular membrane, disintegration of the nuclei as are known effects of the Berenil treatment to Babesia herpailuri, are not noted results after the Imidocarb treatment. The original membrane systems of trophozoites as well as of merozoites, remain unaffected by the drug as long as investigations were carried on (24 h). The satisfying prophylactic effect of Imidocarb as well as the insignificant cellular damages on merozoites may be due to the small feeding of hemoglobin.  相似文献   

12.
Acrylamide (ACR) is a known industrial neurotoxic chemical. Evidence suggests that ACR neurotoxic effect is related to brain neurotransmission disturbances. Since nitric oxide (NO) acts as a neurotransmission modulator and is produced by nitric oxide synthase (NOS), the neuronal NOS (nNOS) and inducible NOS (iNOS) expression pattern were determined in rat cerebral cortex and striatum after subchronic exposure to ACR. Using immunocytochemistry, the neuronal count of nNOS or optical density of iNOS from sections at three coronal levels, bregma 1.0, -0.4, and -2.3 mm, were compared between ACR-treated and control rats. At all three levels, nNOS expressions were uniformly decreased in most of the neocortical subregions following the treatment of ACR. At bregma level 1.0 mm, total numbers of nNOS expressing neurons were significantly decreased to 58.7% and 64.7% of the control in the cortex and striatum of ACR-treated rats, respectively. However, at the bregma level -2.3 mm, ACR treatment did not produce a significant difference in the numbers of nNOS expressing neurons both in the cortex and striatum. Contrary to nNOS, iNOS expressions were consistently increased to approximately 32% in the neocortex and 25% in the striatum, following the subchronic ACR treatment. These data suggest that subchronic ACR exposure involves compensatory mechanism on nNOS and iNOS expression to maintain the homeostasis of NO at the rostral part of the neocortex and the striatum. However, in the caudal brain, increased iNOS expression did not suppress nNOS expression. Therefore, the present study is consistent with the hypothesis that ACR toxicity is mediated through the disturbance to the NO signaling pathway and exhibits a rostrocaudal difference through the differential expressions of nNOS and iNOS in the neocortex and the striatum.  相似文献   

13.
Neurochemical Research - Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed...  相似文献   

14.
15.
Yu S  Zhao X  Zhang T  Yu L  Li S  Cui N  Han X  Zhu Z  Xie K 《Neurochemical research》2005,30(9):1079-1085
Acrylamide (ACR) is known to produce central–peripheral distal axonopathy, which is characterized by distal swellings and secondary degeneration both in experimental animals and human. Ultrastructurally, excessive accumulation of neurofilaments (NFs) in the distal swollen axon is a major pathological hallmark. However, the mechanisms of ACR axonopathy remain unknown. Twenty seven male Wistar rats were randomly divided into three groups. Lower and higher ACR groups were received 20 and 40 mg/kg ACR by i.p. injection respectively. The control group received physiological saline. All rats were sacrificed after 8 weeks of treatment and their cerebrums were dissected, homogenized and used for the determination of the NF proteins. In general, the levels of light NF (NF-L) and medium NF (NF-M) subunits increased consistently in the supernatant, whereas they decreased consistently in the pellet from rats treated with ACR. Compared to that of the control group, the levels of NF-L increased respectively by 104% and 45% (P<0.01) in the supernatant and decreased by 16% and 11% (P<0.01) in the pellet of rat cerebrums in lower and higher groups. The enhancement of NF-M was 76% and 147% (P<0.05, P<0.01) in supernatant, and the reduction was 26% and 36% (P<0.01) in pellet in lower and higher group respectively. The heavy NF (NF-H) level changed slightly. The present results suggested that the change of NF-L and NF-M levels in cerebrum might be relevant to the mechanisms of the neurofilamentous axonopathies induced by ACR.  相似文献   

16.
The cell interactions that take place between Toxoplasma gondii trophozoites and the human immune system have been investigated by using an in vitro model of infection. PBMC were co-cultured with live, appropriately attenuated, trophozoites. When cells from immune (seropositive) donors were used, a proliferative response was observed. At the same time, the proliferating T cells proved capable of controlling the growth of live trophozoites. By contrast, cells from seronegative donors failed to mount a proliferative response and intracellular overgrowth of trophozoites with subsequent cell injury occurred. Actively proliferating T cells were expanded in continuous cell lines with IL-2 and periodical restimulation with Ag in the presence of autologous irradiated mononuclear cells. From some of the lines obtained, clones were also derived. Ten clones were selected for further studies. They proliferated in response to trophozoites but not to unrelated Ag. Their response required the presence of autologous monocytes-macrophages isolated from peripheral blood on Percoll density gradients. B cells that were obtained from the same donors and immortalized by EBV infection proved inefficient as APC. These data suggest that live trophozoites have to be processed by macrophages in order to be presented to T cells. Upon appropriate antigen stimulation, all of the clones produced IL-2 and IFN-gamma, a finding that was consistent with both their CD4+ surface phenotype and their helper capacity on B cell proliferation and differentiation in vitro. The supernatants of all of the stimulated clones released a factor that activated macrophages to kill intracellular trophozoites as well as an unrelated pathogen, Listeria monocytogenes. This factor was identified as IFN-gamma because it was neutralized by specific anti-IFN-gamma antibodies. The present in vitro model of response to live protozoa may prove suitable to assess the role of both T lymphocytes and macrophages in intracellular parasite infections in man. Furthermore, this experimental system may be applied to detect specific lesions of cell mediated immunity in a number of immunodeficiency syndromes.  相似文献   

17.
The changes observed in trophozoites of Toxoplasma gondii after deep-freeze preservation were examined by electron microscopy. Toxoplasmas (strain BK) from peritoneal exudate of infected NMRI mice were supended in Ringer's solution, deep-frozen in liquid nitrogen with 5% dimethylsulphoxide (DMSO), and compared after thawing with control samples with and without the addition of DMSO. Slight structural changes such as widening of endoplasmic reticulum, formation of fissures in the cytoplasm, and loosening of chromatin were only observed in some of the free toxoplasmas of the DMSO control. Among the deep-frozen parasites, about 1/5 of the free stages showed no or only slight morphological changes. In contrast to this, almost all intracellular forms found in macrophages showed lesions. The most remarkable change was a partial destruction of the inner cell membrane complex. The outflow of ribosome-containing protoplasm with ballon-like swelling of the outer elementary membrane was observed as a consequence of this frequent lesion. The outflow of protoplasm induced a drastic decrease in the electronic density of the whole cytoplasm. Other characteristic degenerative signs were vacuolation of cytoplasm up to formation of great optically empty spaces, widening of the perinuclear space, swelling of mitochondria, disintegration of rhoptria, micronemata, and Golgi zone, coarse-plaque loosening, and displacement of electron-dense areas of the nucleus up to disintegration with maintenance of the karyoplasm. In some almost completely disintegrated trophozoites, enlarged mitochondria with remarkable electronic density were observed. Apart from the cell membrane, the conoid was the longest-persisting organelle. The alterations observed after deep-freezing permit the conclusion that the free cells, which were only slightly impaired or not at all, remained infective.  相似文献   

18.
Changes in the Golgi bodies and in hydrolytic enzymes were observed in parasitic ciliates (Nyctotheroides puytoraci) and flagellates (Opalina sudafricana and Protoopalina sp.) after the administration of a single dose of 0.5 mg beta-naphthylamine (BNA) to their host, Bufo regularis. The experiment was carried out during the host's pre-breeding season, from November to February (when only trophozoites are available); the trophozoites were examined 21 days after the injection of BNA. Use of the silver impregnation technique showed an increase in the size of the granular argentophilic Golgi bodies in all three trophozoites after administering BNA to their host. In addition, a larger number of acid phosphatase and nonspecific esterase granules was found in the endoplasm of the three parasites after the injection. The localization of acid phosphatase and nonspecific esterase was found to be similar to the distribution of the Golgi bodies in both the control and the treated preparations. The results could be useful, in that some protozoans could be employed for the quick detection of chemical carcinogenicity if changes in their hydrolytic enzyme content are used as a diagnostic feature.  相似文献   

19.
20.
Acrylamide (ACR) is a known industrial toxic chemical that produce neurotoxicity characterized by progressive neuronal degeneration. This study was designed to investigate the protective effect of fish oil on ACR-induced neuronal damage in Wistar rats. ACR enhances the production of reactive oxygen species and potentially affects brain. ACR administered rats showed increased levels of lipid peroxidative product, protein carbonyl content, hydroxyl radical and hydroperoxide which were significantly modulated by the supplementation of fish oil. The activities of enzymic antioxidants and levels of reduced glutathione were markedly lowered in ACR-induced rats; fish oil treatment augmented these antioxidant levels in cortex. Free radicals generated during ACR administration reduced the activities of membrane adenosine triphosphatases and acetylcholine esterase. Fish oil enhanced the activities of these enzymes near normal level. Histological observation represented the protective role of fish oil in ACR-induced neuronal damage. Fish oil reduced the ACR-induced apoptosis through the modulation in expressions of B-cell lymphoma 2 (Bcl2)-associated X protein and Bcl2-associated death promoter. Further, fish oil increases the expression of heat shock protein 27 (Hsp27) in ACR-induced rats. This study provides evidence for the neuroprotective effect of fish oil on ACR-induced neurotoxicity by reducing oxidative stress and apoptosis with modulation in the expression of Hsp27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号