首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intestinal transport of three actively transported sugars has been studied in order to determine mechanistic features that, (a) can be attributed to stereospecific affinity and (b) are common.The apparent affinity constants at the brush-border indicate that sugars are selected in the order, β-methyl glucose >d-galactose > 3-O-methyl glucose, (the Km values are 1.23, 5.0 and 18.1 mM, respectively.) At low substrate concentrations the Kt values for Na+ activation of sugar entry across the brush-border are: 27.25, and 140 mequiv. for β-methyl glucose, galactose and 3-O-methyl glucose, respectively. These kinetic parameters suggest that Na+, water, sugar and membrane-binding groups are all factors which determine selective affinity.In spite of these differences in operational affinity, all three sugars show a reciprocal change in brush-border entry and exit permeability as Ringer [Na] or [sugar] is increased. Estimates of the changes in convective velocity and in the diffusive velocity when the sugar concentration in the Ringer is raised reveal that with all three sugars, the fractional reduction in convective velocity is approximately equal to the (reduction of diffusive velocity)2. This is consistent with the view that the sugars move via pores in the brush-border by convective diffusion.Theophylline reduces the serosal border permeability to β-methyl glucose and to 3-O-methyl glucose relatively by the same extent and consequently, increases the intracellular accumulation of these sugars.The permeability of the serosal border to β-methyl glucose entry is lower than permeability of the serosal border to β-methyl glucose exit, which suggests that β-methyl glucose may be convected out of the cell across the lateral serosal border.  相似文献   

2.
3.
The effects of theophylline and dibutyryl cyclic AMP, on in vitro unidirectional galactose fluxes across the mucosal and serosal borders of rabbit ileum have been studied. 1. When Ringer [galactose] = 2mM, theophylline and dibutyryl cyclic AMP reduce both mucosal-serosal and serosal-mucosal galactose flux by approx. 50%. The K1 for theophylline inhibition of flux in both directions is 2 mM. 1 mM dibutyryl cyclic AMP elicits a maximal inhibitory response. Concurrent with the inhibition in transmural galactose fluxes, theophylline and dibutyryl cyclic AMP increase the tissue accumulation of [galactose] and the specific-activity ratio R of 3H : 14C-labelled galactose coming from the mucosal and serosal solutions respectively. It is deduced that theophylline and dibutyryl cyclic AMP are without effect on the mucosal unidirectional permeability to galactose but cause a symmetrical reduction in serosal entry and exit permeability. 2. Reduction in the asymmetry of the mucosal border to galactose by reducing Ringer [Na], raising Ringer [galctose] or adding ouabain reduces the theophylline-dependent increase in galactose accumulation. 3. Hypertonicity in the serosal solution increases the permeability of the serosal border to galactose and reduces tissue galactose accumulation. Serosal hypertonicity partially reverses the theophylline-depedent effects on galactose transport. Replacing Ringer chloride by sulphate abolishes the theophylline-dependent effects on galactose transport. 4. It is considered that the theophylline-dependent increase in galactose accumulation results from the reduction in serosal permeability. This is shown to be a quantitatively consistent inference. 5. Further support for the view that the asymmetric transport of galactose in rabbit ileum results from convective-diffusion is presented.  相似文献   

4.
5.
Net absorption and accumulation of D-galactose, beta-methyl D-glucose and low concentrations of 3-0-methyl-D-glucose by sheets of rabbit ileum are observed even when Na+ in the mucosal solution is replaced by choline. This indicates that active sugar transport can occur in the direction opposite to the brush-border Na+ gradient.  相似文献   

6.
7.
UO22+ 1.3 mM added as UO2(NO3)2 to the mucosal solution consistently inhibited the P.D. and ISC evoked by 11 mM glucose and 35 mM 3-O-methyl glucose across isolated strips of bullfrog small intestine bathed by symmetrical Ringer solutions in which SO42- was the major anion. The average degree of inhibition in the presence of glucose was 42 +/- 7(SEM) percent. P.D. and ISC in the absence of transported solutes were not significatnly altered by mucosal UO22+ at this concentration. Increasing the mucosal UO22+ concentration to 2.6 mM did not significantly increase its inhibitory action on glucose-evoked P.D. and ISC. Further increasing the UO22+ concentration to 13 mM completely inhibited glucose-induced P.D. and ISC but also markedly reduced these parameters in the absence of glucose. Serosal UO22+ (1.3mM) had no effect on the P.D. and ISC evoked by glucose and 3-O-methyl glucose. It is suggested that the inhibitory action of UO22+ involves binding of this ion to anionic sites located in the apical membrane of the absorptive cells. Mucosal or serosal UO22+ (1.3 mM) had no effect on the P.D. and ISC elicited by 20 mM valine, indicating that under the conditions of these experiments UO22+ selectively inhibits sugar-induced P.D. and ISC and, by implication mucosal sugar uptake.  相似文献   

8.
Whole skins and isolated epithelia were bathed with isotonic media (congruent to 244 mOsm) containing sucrose or glucose. The serosal osmolality was intermittently reduced (congruent to 137 mOsm) by removing the nonelectrolyte. Transepithelial and intracellular electrophysiological parameters were monitored while serosal osmolality was changed. Serosal hypotonicity increased the short-circuit current (ISC) and the basolateral conductance, hyperpolarized the apical membrane (psi mc), and increased the intracellular Na+ concentration. The increases in apical conductance and apical Na+ permeability (measured from Goldman fits of the relationship between amiloride-sensitive current and psi mc) were not statistically significant. To verify that the osmotically induced changes in ISC were mediated primarily at the basolateral membrane, the basolateral membrane potential of the experimental area was clamped close to 0 mV by replacing the serosal Na+ with K+ in Cl--free media. The adjoining control area was exposed to serosal Na+. Serosal hypotonicity produced a sustained stimulation of ISC across the control, but not across the adjoining depolarized tissue area. The current results support the concept that hypotonic cell swelling increases Na+ transport across frog skin epithelium by increasing the basolateral K+ permeability, hyperpolarizing the apical membrane, and increasing the electrical driving force for apical Na+ entry.  相似文献   

9.
Previously, we have shown that the monomeric-sugar composition of cell-surface-associated glycoconjugates of two strains of Chlamydomonas eugametos, of different mating type, differs strikingly (Gerwig et al. 1984, Carbohydr. Res. 127, 245–251). Besides the common occurrence of various pentoses and hexoses, the glycoconjugates of one strain contain 4-O-methyl xylose, a 2-O-methyl pentose (probably 2-O-methyl arabinose) and 3-O-methyl galactose, whereas those of the other strain contain 6-O-methyl mannose and 3-O-methyl glucose. In order to investigate whether these differences are relevant to the mating process of this organism, the sugar composition of the sexual progeny of these strains was analyzed. The ability to produce 4-O-methyl xylose, 2-O-methyl pentose and 3-O-methyl galactose on the one hand, and the ability to produce 6-O-methyl mannose and 3-O-methyl glucose on the other hand, appear to be genetically linked. However, the ability to produce either set of O-methyl sugars was inherited independently of mating type. O-Methylated sugars do not occur in the cell wall of C. eugametos, or in the cell-free medium, but only in surface-membrane-associated glycoconjugates, extractable with salt or detergent solutions.Abbreviation mt +/- mating-type plus or minus  相似文献   

10.
Sodium and Sugar Fluxes across the Mucosal Border of Rabbit Ileum   总被引:16,自引:3,他引:13       下载免费PDF全文
Unidirectional influxes of sugars and Na from muscosal solution into the cells of rabbit ileum have been examined. The influxes of glucose, galactose, and 3-0-methyl glucose (3 MG) follow Michaelis-Menten type kinetics and are markedly dependent on the presence ofNa in the mucosal solution. For 3 MG, reduction of Na concentration causes a decrease in maximal rate of influx and little change in the "apparent Michaelis constant." There appeared to be little mediated entry of 3 MG into the cells from Na-free solution. The influx of Na was increased by the presence of 3 MG in the mucosal solution and at all Na concentrations tested, there was a 1:1 ratio between sugar influx and the sugar-dependent Na influx. On the basis of these observations, a model has been developed for the sugar transport system involving a transport site that combines with both sugar and Na.  相似文献   

11.
Alanine Efflux across the Serosal Border of Turtle Intestine   总被引:1,自引:0,他引:1  
The exit of alanine across the serosal border of the epithelial cells of turtle intestine was measured by direct and indirect techniques. A decrease or an increase in cell Na did not affect the amino acid flux from cell to serosal solution. Cells loaded with Na and alanine did not exhibit any extrusion of alanine when their serosal membranes were exposed to an Na-free medium containing alanine. However, substantial amino acid extrusion was observed across the mucosal cell border under similar conditions. Although alanine flux across the serosal membrane appeared to be Na-independent, it showed a tendency toward saturation as cellular alanine concentration was elevated. The results are consistent with the postulate that the serosal and mucosal membranes of intestinal cells are asymmetrical with respect to amino acid transport mechanisms. The serosal membrane appears to have an Na-independent carrier-mediated mechanism responsible for alanine transport while transport across the mucosal border involves an Na-dependent process.  相似文献   

12.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

13.
The Km, Vmax, and Ki of the entry reaction were determined for three substrates of the beta-methyl galactoside transport system: D-galactose, D-glycerol-beta-D-galactoside, and beta-methyl-D-galactoside. Although the data for D-galactose and D-glycerol-beta-D-galactoside followed simple Michaelis-Menten kinetics, the results for beta-methyl-D-galactoside deviated from Michaelis-Menten kinetics in that the Ki for beta-methyl-D-galactoside inhibition of both of the other two substrates was 10-fold greater than the Km for beta-methyl-D-galactoside entry. Furthermore, two partial mgl- strains retain 56% of the parental level of the beta-methyl-D-galactoside entry reaction, but only 12% of the parental level of transport of the other two substrates. The exit reaction of beta-methyl-D-galactoside was shown to be first order. It was stimulated sixfold when the cells were provided with an energy source. This stimulation required adenosine 5'-triphosphate or a related compound. The exit reaction was not altered by mutations in any of the three cistrons which inactivate the beta-methyl-D-galactoside entry reaction, was not increased by growth in the presence of inducers of the entry reaction, and was not repressed by growth on glucose. The striking differences between the entry and exit reactions suggest that they either use different carriers or that none of the three cistrons which are currently known to code for components of the beta-methyl galactoside transport system code for its membrane carrier.  相似文献   

14.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

15.
The jejunal mucosal membrane of albino mice was used to study the electrical properties and ion transport. The membrane was bathed in Krebs-Ringer solution with or without glucose.When ethacrynic acid (EA), furosemide, or amiloride was added to the bathing fluid of both sides, a transient increase followed by a decrease of both potential difference (PD) and short circuit current (Isc) were observed. In glucose-containing bathing medium, EA inhibited both net Na and Cl flux and residual flux; however, EA had little effect on both Na and Cl flux in glucose-free bathing medium. Studies using everted intestinal sac technique showed that EA inhibited both glucose and L-tyrosine across the mucosal membrane against concentration gradients. Furosemide and amiloride were less potent than EA in inhibiting the Na and Cl flux when the bathing solution contained glucose. But these two compounds had no effect on glucose and L-tyrosine transport across the intestinal mucosa. Furthermore, they did inhibit Cl flux even in the condition of glucose-free bathing medium. It is postulated that all three diuretics act on the brush-border membrane of the intestine. EA probably inhibits the Na-glucose cotransporting system; furosemide and amiloride inhibit the simple diffusion process of Na entry of Cl exit by decreasing the conductance of the membrane.  相似文献   

16.
Uptake studies of D- and L-glucose were performed on vesicles derived from brush-border and basal-lateral membranes. The uptake of the sugars into the vesicles was osmotically sensitive and independent of glucose metabolism. In brush-border vesicles D-glucose but not L-glucose transport was Na+ -dependent, was inhibited by phlorizin, and showed a transitory vesicle/medium ratio greater than 1, in the presence of an initial Na+ gradient. Basal-lateral membranes take up D-glucose faster than L-glucose, but the D-glucose uptake is significantly less sensitive to sodium removal and only moderately inhibited by phlorizin as compared to the brush-border fraction.  相似文献   

17.
Sodium movement across the luminal membrane of the toad bladder is the rate-limiting step for active transepithelial transport. Recent studies suggest that changes in intracellular sodium regulate the Na permeability of the luminal border, either directly or indirectly via increases in cell calcium induced by the high intracellular sodium. To test these proposals, we measured Na movement across the luminal membrane (th Na influx) and found that it is reduced when intracellular Na is increased by ouabain or by removal of external potassium. Removal of serosal sodium also reduced the influx, suggesting that the Na gradient across the serosal border rather than the cell Na concentration is the critical factor. Because in tissues such as muscle and nerve a steep transmembrane sodium gradient is necessary to maintain low cytosolic calcium, it is possible that a reduction in the sodium gradient in the toad bladder reduces luminal permeability by increasing the cell calcium activity. We found that the inhibition of the influx by ouabain or low serosal Na was prevented, in part, by removal of serosal calcium. To test for the existence of a sodium- calcium exchanger, we studied calcium transport in isolated basolateral membrane vesicles and found that calcium uptake was proportional to the outward directed sodium gradient. Uptake was not the result of a sodium diffusion potential. Calcium efflux from preloaded vesicles was accelerated by an inward directed sodium gradient. Preliminary kinetic analysis showed that the sodium gradient changes the Vmax but not the Km of calcium transport. These results suggest that the effect of intracellular sodium on the luminal sodium permeability is due to changes in intracellular calcium.  相似文献   

18.
In order to examine the involvement of insulin in the activity of Na+/glucose cotransporter in rat small intestine, we compared Na(+)-dependent uptake of D-glucose by brush-border membrane vesicles prepared from control, streptozotocin-induced diabetic, insulin-treated diabetic and starved diabetic rats. In four groups, the uptake of D-glucose showed a transient overshoot in the presence of Na+ gradient between medium and vesicles (medium greater than vesicles). The overshoot magnitude was increased (1.8-fold of controls) in diabetic brush border membrane vesicles and recovered to the control level by the treatment of diabetic rats with insulin. In contrast, increased uptake of D-glucose in diabetic rats was not recovered by the starvation of diabetic rats although the blood glucose level was the same as that of controls. Furthermore, we attempted to examine phlorizin binding activities among four groups. Scatchard analysis indicated that phlorizin binding to diabetic brush border membrane vesicles was increased (1.6-fold of controls) without a change of the affinity for phlorizin as compared with controls. Increased binding of phlorizin to diabetic brush border membrane vesicles was also recovered to the control level by the treatment of diabetic rats with insulin, but not by starvation. These results suggested that the increased activity of Na+/glucose cotransporter in diabetic rats was due to the increase of the number of cotransporter and that intestinal cotransporter was physiologically controlled by insulin, but not by blood glucose levels.  相似文献   

19.
The sodium-dependent entry of proline and glycine into rat renal brush-border membrane vesicles was examined. The high Km system for proline shows no sodium dependence. The low Km system for glycine entry is strictly dependent on a Na+ gradient but shows no evidence of the carrier system having any affinity for Na+. The low Km system for proline and high Km system for glycine transport appear to be shared. Both systems are stimulated by a Na+ gradient and appear to have an affinity for the Na+. The effect of decreasing the Na+ concentration in the ionic gradient is to alter the Km for amino acid entry and, at low Na+ concentrations, to inhibit the V for glycine entry.  相似文献   

20.
The volume of individual cells in intact frog urinary bladders was determined by quantitative microscopy and changes in volume were used to monitor the movement of solute across the basolateral membrane. When exposed to a serosal hyposmotic solution, the cells swell as expected for an osmometer, but then regulate their volume back to near control in a process that involves the loss of KCl. We show here that volume regulation is abolished by Ba++, which suggests that KCl movements are mediated by conductive channels for both ions. Volume regulation is also inhibited by removing Ca++ from the serosal perfusate, which suggests that the channels are activated by this cation. Previously, amiloride was observed to inhibit volume regulation: in this study, amiloride-inhibited, hyposmotically swollen cells lost volume when the Ca++ ionophore A23187 was added to Ca++-replete media. We attempted to effect volume changes under isosmotic conditions by suddenly inhibiting Na+ entry across the apical membrane with amiloride, or Na+ exit across the basolateral membrane with ouabain. Neither of these Na+ transport inhibitors produced the expected results. Amiloride, instead of causing a decrease in cell volume, had no effect, and ouabain, instead of causing cell swelling, caused cell shrinkage. However, increasing cell Ca++ with A23187, in both the absence and presence of amiloride, caused cells to lose volume, and Ca++-free Ringer's solution (serosal perfusate only) caused ouabain-blocked cells to swell. Finally, again under isosmotic conditions, removal of Na+ from the serosal perfusate caused a loss of volume from cells exposed to amiloride. These results strongly suggest that intracellular Ca++ mediates cell volume regulation by exerting a negative control on apical membrane Na+ permeability and a positive control on basolateral membrane K+ permeability. They also are compatible with the existence of a basolateral Na+/Ca++ exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号