首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specificity of the 26S proteasome endoribonuclease activity in proerythroleukemic K562 cells has been shown to change under the effects of inducers of erythroid differentiation inducers led to specific stimulation of RNase activity for certain mRNAs and to reduction of proteasome RNase activity for other mRNAs. The studied enzymatic activity was shown to be specifically and selectively dependent on phosphorylation of the 26S proteasome subunits, as well as on Mg and Ca ions. It was shown that the specificity of the proteasome RNase activity is regulated during differentiation and apoptosis. Selective regulation of the proteasome via the activities of different nuclease centers was suggested. This regulation may be accomplished through changes in the phosphorylation state of the proteasome subunits as well as by cation homeostasis.  相似文献   

2.
It has been shown that endoribonuclease activity of alpha-RNP particles and 26S proteasomes are changed under the action of inductors of programmed cell death. Treatment of K562 cells with inductors of apoptosis--doxorubicin (adriamycin) and diethylmaleate--lead to a significant stimulation of RNAse activity of alpha-RNP and to reduction of proteasome RNase activity. The enzymatic activity under study has been shown to be specifically and selectively dependent on phosphorylation of subunits of alpha-RNP particles and 26S proteasomes. The characteristics of RNAse activity of different subpopulations of proteasomes differ. The specificity of a subpopulation of proteasomes exported from the cell has been demonstrated. Proteasome and alpha-RNP involvement in the coordinated control of stability of various specific messenger RNA molecules is suggested, and one of the mechanisms of this control might be the export of specific subpopulation of proteasomes from the cell.  相似文献   

3.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

4.
In the present work, changes in the subunit composition, phosphorylation state, and enzymatic activities of 26S proteasomes undergoing programmed cell death were studied. Apoptosis in proerythroleukemic K562 cells was induced by the glutathione-depleting agent, diethylmaleate (DEM). We have shown for the first time that proteasomes isolated from the nuclei of control and apoptotic K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. As well, the trypsin-and chymotrypsin-like activities of nuclear proteasomes and the specificity of proteasomal nucleolysis of several individual messenger RNAs (c-fos and c-myc) were found to change under DEM action in K562 cells. DEM treatment of K562 cells led to a modification of proteasomal zeta/α5 and iota/α6 subunits associated with RNase activity. The obtained results argue in favor of changes of proteasomal subunit composition, phosphorylation state, and enzymatic activities, i.e., indicate the so-called reprogramming of the nuclear proteasome population during induced apoptosis in K562 cells.  相似文献   

5.
Changes in the subunit composition, phosphorylation of the subunits, and regulation of the activities of 26S proteasomes in proliferating cells undergoing programmed cell death have not been studied so far. Moreover, there are no reports on phosphorylation of proteasome subunits both in normal and in neoplastic cells during apoptosis. The data of the present study show for the first time that apoptosis inductor doxorubicin regulates subunit composition, enzymatic activities, and phosphorylation state of 26S proteasomes in neoplastic (proerythroleukemic K562) cells or, in other words, induces reprogramming of proteasome population. Furthermore, the phosphorylation state of proteasomes is found to be the mechanism controlling specificity of proteasomal proteolytic and endoribonuclease activities.  相似文献   

6.
The induction of apoptosis in K562 cells by doxorubicin (DR) was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed death. Here we have shown for the first time that proteasomes isolated from the nuclei of control and induced K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that trypsin- and chymotrypsin-like, and the endoribonuclease activities of nuclear 26S proteasomes are affected under influence of DR on K562 cells. Treatment of K562 cells with DR leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNase activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasomes population in undergoing apoptosis K562 cells which is manifested by changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

7.
The induction of apoptosis in K562 cells by doxorbuicin was used as a model for studying changes of the subunit composition, phosphorylation state, and enzymatic activities of nuclear proteasomes undergoing programmed cell death. The proteasomes isolated from nuclei of the control and induced K562 cells have been shown to differ in their subunit composition, as well as in the phosphorylation state of subunits at threonine and tyrosine residues. Changes of the trypsin-and chymotrypsin-like, as well as endoribonuclease, activities of proteasomes under the doxorubicin action were revealed. After the induction of apoptosis in K562 cells by doxorubicin, we observed a modification of the RNase activity-associated proteasome subunits zeta/α5 and iota/α6. These results argue in favor of changes of proteasomal subunit composition, enzymatic activities, and the phosphorylation state, i.e., of the reprogramming of nuclear proteasome population, after the induction of apoptosis in K562 cells.  相似文献   

8.
Here we have studied changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed cell death. Apoptosis in proerythroleukemic K562 cells was induced by glutathione-depleting agent, diethylmaleate (DEM). We have shown for the first time that proteasomes isolated from the nuclei of control and induces K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. We observed trypsin- and chymotrypsin-like activities on nuclear proteasomes and the specificity of proteasomal nucleolysis of several individual messenger RNAs (c-fos and c-myc) to be changed under effect of DEM on K562 cells. Treatment of K562 cells with DEM leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNAse activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasome population in undergoing apoptosis K562 cells which is manifested by the changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

9.
26S proteasome is a large multi-subunit protein complex involved in proteolytic degradation of proteins. In addition to its canonical proteolytic activity, the proteasome is also associated with recently characterized endoribonuclease (endo-RNAse) activity. However, neither functional significance, nor the mechanisms of its regulation are currently known. In this report, we show that 26S proteasome is able to hydrolyze various cellular RNAs, including AU-rich mRNA of c-myc and c-fos. The endonucleolytic degradation of these mRNAs is exerted by one of the 26S proteasome subunits, PSMA5 (α5). The RNAse activity of 26S proteasome is differentially affected by various extra-cellular signals. Moreover, this activity contributes to the process of degradation of c-myc mRNA during induced differentiation of K562 cells, and may be controlled by phosphorylation of the adjacent subunits, PSMA1 (α6) and PSMA3 (α7). Collectively, the data presented in this report suggest a causal link between cell signalling pathways, endo-RNAse activity of the 26S proteasome complex and metabolism of cellular RNAs.  相似文献   

10.
The proteasome is the main intracellular proteolytic machine involved in the regulation of numerous cellular processes, including gene expression. In addition to their proteolytic activity, proteasomes also exhibit ATPase/helicase (the 19S particle) and RNAse (the 20S particle) activities, which are regulated by post-translational modifications. In this report we uncovered that several 20S particle subunits: α1 (PSMA6), α2 (PSMA2), α4 (PSMA7), α5 (PSMA5), α6 (PSMA1) and α7 (PSMA3) possess RNAse activity against the p53 mRNA in vitro. Furthermore, we found that the RNAse activity of PSMA1 and PSMA3 was regulated upon hemin-induced differentiation of K562 proerythroleukemia cells. The decrease in RNAse activity of PSMA1 and PSMA3 was paralleled by changes in their status of phosphorylation and ubiquitylation. Collectively, our data support the notion that proteasomal RNAse activity may be functionally important and provide insights into the potential mechanism of p53 repression in erythroleukemia cells by RNAse activity of the 20S α-type subunits.  相似文献   

11.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

12.
The polo-like kinase (Plk) has been shown to be associated with the anaphase-promoting complex at the transition from metaphase to anaphase and to regulate ubiquitination, the process that targets proteins for degradation by proteasomes. In this study, we have identified proteasomal proteins interacting with Plk by mass spectrometry and found that Plk and 20S proteasome subunits could be reversibly immunoprecipitated from both human CA46 cells and HEK 293 cells transfected with HA-Plk. Furthermore, both coprecipitated Plk and baculovirus-expressed Plk were able to phosphorylate proteasome subunits, and metabolic labeling studies indicate that Plk is partially responsible for the phosphorylation of 20S proteasome subunits C9 and C8 in vivo. In addition, phosphorylation of proteasomes by Plk enhanced proteolytic activity toward an artificial substrate Suc-L-L-V-Y-AMC in vitro and in vivo. Finally, we were also able to detect Plk associated with 26S proteasomes under certain conditions. Together our results suggest that Plk is an important mitotic regulator of proteasome activity.  相似文献   

13.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

14.
While many of the molecular details of myogenesis have been investigated extensively, the function of immunoproteasomes (i-proteasomes) in myogenic differentiation remains unknown. We show here that the mRNA of i-proteasome subunits, the protein levels of constitutive and inducible proteasome subunits, and the proteolytic activities of the 20S and 26S proteasomes were significantly upregulated during differentiation of skeletal muscle C2C12 cells. Knockdown of the i-proteasome catalytic subunit PSMB9 by short hairpin RNA (shRNA) decreased the expression of both PSMB9 and PSMB8 without affecting other catalytic subunits of the proteasome. PSMB9 knockdown and the use of i-proteasome-specific inhibitors both decreased 26S proteasome activities and prevented C2C12 differentiation. Inhibition of the i-proteasome also impaired human skeletal myoblast differentiation. Suppression of the i-proteasome increased protein oxidation, and these oxidized proteins were found to be more susceptible to degradation by exogenous i-proteasomes. Downregulation of the i-proteasome also increased proapoptotic proteins, including Bax, as well as cleaved caspase 3, cleaved caspase 9, and cleaved poly(ADP-ribose) polymerase (PARP), suggesting that impaired differentiation is likely to occur because of significantly increased apoptosis. These results demonstrate for the first time that i-proteasomes, independent of constitutive proteasomes, are critical for skeletal muscle differentiation of mouse C2C12 cells.  相似文献   

15.
For the first time it has been shown that RNase activity is induced under the influence of EGF on epidermoid carcinoma cell line A431. Proteasomes from EGF-treated A431 cells destabilize the 3'-untranslated regions of non-muscle beta actin mRNA, creating a specific cleavage pattern. In addition, these particles have been shown to specifically cleave Alu-containing informational RNA. The enzymatic activity under study has been shown to be dependent on phosphorylation of proteasomal subunits and specifically and selectively regulated by Ca and Mg ions. Proteasome involvement in the coordinated control of stability of specific messenger RNA molecules is suggested. The endoribonuclease activity of 26S proteasomes can constitute a link between EGF signaling pathways and RNA stability.  相似文献   

16.
The ability of 26S proteasomes from the human proerythroleukaemic cell line K562 to degrade high-molecular-weight cytoplasmic RNAs, particularly specific messenger RNA, has been detected. The addition of hemin to K562 cells in the culture media leads to redistribution of proteasomes and their migration mainly to the cytoplasm. The human wild type p53 gene mRNA was shown to be specifically nucleolized by proteasomes. These particles displayed endoribonuclease activity towards mRNA for Renilla sp. luciferase. Proteasomes also specifically degraded Alu-containing mRNAs. A supposition is made about the involvement of proteasomes in stability control of specific RNA groups.  相似文献   

17.
18.
Proteosomes from human proerythroleukaemic cell line K562 are found to degrade high molecular weight cytoplasmic RNAs, particularly ribosomal and specific messenger RNA. This activity was observed to be endoribonucleotylic. The induction of differentiation by erythroid pathway in K562 cells invokes augmentation of endonuclease activity in proteasomes. The number of characteristics of this enzymatic activity was investigated. Specificity of endonuclease of these RNPs is shown to be Ca- and Mg-dependent. Dephosphorylation of protein subunits suppresses RNase activity of proteasomes. Endonuclease of proteasomes is thermolabile. The examined activity depends on the secondary structure of substrate RNA. Protein subunits are responsible for ribonuclease activity of proteasomes rather than for low molecular weight RNAs associated with the complex.  相似文献   

19.
Caspase-7 mediated cleavage of proteasome subunits during apoptosis   总被引:1,自引:0,他引:1  
Caspase-3 and caspase-7 are structurally closely related and demonstrate overlapping substrate specificity. However, during apoptosis, they are differentially regulated and show distinct subcellular localizations, implying the presence of specific substrates. In this study, to identify caspase-7 substrates, we treated the lysates derived from caspase-3-deficient MCF-7 cells with purified caspase-7 and analyzed decreased proteins by 2-DE. Intriguingly, several proteasome subunits such as alpha2, alpha6, and Rpt1 are degraded by caspase-7 during apoptosis in vitro and in vivo. Caspase-7 mediated cleavage of proteasome subunits results in the reduction of proteasome activity and thereby increases the accumulation of ubiquitinated proteins in cells. These findings suggest that caspase-7 facilitates the execution of apoptosis through down-regulation of the 26S proteasome, which regulates the turnover of proteins involved in the apoptotic process.  相似文献   

20.
The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号