首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the glucocorticoid dexamethasone on fatty acid and pyruvate metabolism were studied in rat hepatocyte cultures. Parenchymal hepatocytes were cultured for 24 h with nanomolar concentrations of dexamethasone in either the absence or the presence of insulin (10 nM) or dibutyryl cyclic AMP (1 microM BcAMP). Dexamethasone (1-100 nM) increased the rate of formation of ketone bodies from 0.5 mM-palmitate in both the absence and the presence of BcAMP, but inhibited ketogenesis in the presence of insulin. Dexamethasone increased the proportion of the palmitate metabolized that was partitioned towards oxidation to ketone bodies, and decreased the cellular [glycerol 3-phosphate]. The latter suggests that the increased partitioning of palmitate to ketone bodies may be associated with decreased esterification to glycerolipid. The Vmax. of carnitine palmitoyltransferase (CPT) and the affinity of CPT for palmitoyl-CoA were not affected by dexamethasone, indicating that the increased ketogenesis was not due to an increase in enzymic capacity for long-chain acylcarnitine formation. Dexamethasone and BcAMP, separately and in combination, increased gluconeogenesis. In the presence of insulin, however, dexamethasone inhibited gluconeogenesis. Changes in gluconeogenesis thus paralleled changes in ketogenesis. Dexamethasone decreased the [3-hydroxybutyrate]/[acetoacetate] ratio, despite increasing the rate of ketogenesis and presumably the mitochondrial production of reducing equivalents. The more oxidized mitochondrial NADH/NAD+ redox couple with dexamethasone is probably due either to an increased rate of electron transport or to increased transfer of mitochondrial reducing equivalents to the cytoplasm.  相似文献   

2.
The contribution of pyruvate to ketogenesis was determined in rat hepatocyte suspensions by using [14C]pyruvate. The rates of conversion of pyruvate into ketone bodies in hepatocytes from fed and 24 h-starved rats were 10 and 17 mumol/h per g wet wt. respectively, and accounted for 50 and 29% of the total ketone bodies formed. In hepatocytes from fed rats, the addition of palmitate (0.25-1 mM) increased the rate of conversion of pyruvate into ketone bodies (80-140%), but decreased the relative contribution of pyruvate to total ketogenesis. In hepatocytes from starved rats, palmitate did not increase pyruvate conversion into ketone bodies.  相似文献   

3.
The time course of glucagon action on the utilization of [U-14C]palmitate by isolated hepatocytes was studied. Ten minutes incubation of the cells after hormone addition was required in order to observe increased oxidation and decreased esterification of the labeled palmitate. The acid-soluble, labeled oxidation products could be separated into two main fractions, glucose and ketone bodies. Initially, glucagon directed the flux of radioactivity toward glucose and CO2. After prolonged incubation in the presence of glucagon, labeled ketone bodies, as well as labeled glucose and 14CO2, were increased. This effect was most marked as regards glucose. The results indicate that glucagon induces a rapidly onset stimulation of the rates of Krebs cycle and gluconeogenesis, while increased oxidation and decreased esterification of palmitate are time-delayed corresponding to the establishment of a lower level of glycerophosphate. About 10% of the glucose carbon formed by gluconeogenesis originated from the fatty acid when cells from fasted rats were incubated in the presence of alanine and [U-14C]palmitate.  相似文献   

4.
The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate''s protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.  相似文献   

5.
To investigate the hepatic ketone body metabolism in NIDDM, we studied the ketone body production rates in hepatocytes from newly developed non-obese NIDDM model rats. NIDDM model rats were prepared by intraperitoneal injection of streptozotocin at 2 or 5 days of age (STZ2, STZ5 respectively). After 10-15 weeks, ketone body production rates in hepatocytes isolated from these rats were compared with those from control rats as well as ketotic rats made by intravenous injection of streptozotocin into adult rats. Basal ketone body production rates from 0.3 mM [U-14C] palmitate in hepatocytes from control, STZ 2, STZ 5 and ketotic rats were 11.7 +/- 0.98, 14.9 +/- 0.72, 16.0 +/- 0.45, 22.8 +/- 2.32 nmole.palmitate/mg.prot/hr, respectively. These rates were stimulated by 1 microgram/ml of glucagon in control, STZ 2 and STZ 5 rats (14.1 +/- 0.99, 18.6 +/- 1.36, 18.7 +/- 0.69 nmole.palmitate/mg.prot/hr, respectively), but not in ketotic rats (22.8 +/- 2.07 nmole.palmitate/mg.prot/hr). The similar effects were observed by 1 microgram/ml of epinephrine. The basal ketone body production rates were negatively correlated to both hepatic glycogen contents and plasma IRI levels. Considering these parameters together, the extent of metabolic derangement in STZ 2 and STZ 5 rats was between that in control and ketotic rats. These results indicate that the derangements of hepatic ketone body production are related to the severity of insulin deficiency and suggest that the enhanced hepatic ketogenesis contributes in part to the elevated plasma ketone body levels in non-obese NIDDM.  相似文献   

6.
The effects of pancreatic hormones and cyclic AMP on the induction of ketogenesis and long-chain fatty acid oxidation were studied in primary cultures of hepatocytes from fetal and newborn rabbits. Hepatocytes were cultivated during 4 days in the presence of glucagon (10(-6) M), forskolin (2 x 10(-5) M), dibutyryl cyclic AMP (10(-4) M), 8-bromo cyclic AMP (10(-4) M) or insulin (10(-7) M). Ketogenesis and fatty acid metabolism were measured using [1-14C]oleate (0.5 mM). In hepatocytes from fetuses at term, the rate of ketogenesis remained very low during the 4 days of culture. In hepatocytes from 24-h-old newborn, the rate of ketogenesis was high during the first 48 h of culture and then rapidly decreased to reach a low value similar to that measured in cultured hepatocytes from term fetuses. A 48 h exposure to glucagon, forskolin or cyclic AMP derivatives is necessary to induce ketone body production in cultured fetal hepatocytes at a rate similar to that found in cultured hepatocytes from newborn rabbits. In fetal liver cells, the induction of ketogenesis by glucagon or cyclic AMP results from changes in the partitioning of long-chain fatty acid from esterification towards oxidation. Indeed, glucagon, forskolin and cyclic AMP enhance oleate oxidation (basal, 12.7 +/- 1.6; glucagon, 50.0 +/- 5.5; forskolin, 70.6 +/- 5.4; cyclic AMP, 77.5 +/- 3.4% of oleate metabolized) at the expense of oleate esterification. In cultured fetal hepatocytes, the rate of fatty acid oxidation in the presence of cyclic AMP is similar to the rate of oleate oxidation present at the time of plating (85.1 +/- 2.6% of oleate metabolized) in newborn rabbit hepatocytes. In hepatocytes from term fetuses, the presence of insulin antagonizes in a dose-dependent fashion the glucagon-induced oleate oxidation. Neither glucagon nor cyclic AMP affect the activity of carnitine palmitoyltransferase I (CPT I). The malonyl-CoA concentration inducing 50% inhibition of CPT I (IC50) is 14-fold higher in mitochondria isolated from cultured newborn hepatocytes (0.95 microM) compared with fetal hepatocytes (0.07 microM), indicating that the sensitivity of CPT I decreases markedly in the first 24 h after birth. The addition of glucagon or cyclic AMP into cultured fetal hepatocytes decreased by 80% and 90% respectively the sensitivity of CPT I to malonyl-CoA inhibition. In the presence of cyclic AMP, the sensitivity of CPT I to malonyl-CoA inhibition in cultured fetal hepatocytes is very similar to that measured in cultured hepatocytes from 24-h-old newborns.  相似文献   

7.
Evidence for a homogeneous pool of acetyl-CoA in rat-liver mitochondria   总被引:2,自引:0,他引:2  
Rat-liver mitochondria oxidized [1-14C]palmitate or [U-14C]palmitate and unlabelled pyruvate in a medium containing fluorocitrate and L-carnitine. The oxidation products (acetyl-L-carnitine, ketone bodies and citrate) were separated by anion-exchange chromatography and their specific activities were determined. The distribution of radioactivity over the two halves of the ketone bodies was essayed. Significant differences between the specific activities of citrate, acetyl-L-carnitine and the carboxylhalf of the ketone bodies were not observed; this was consistently the case, even when pyruvate contributed for more than 80% to the acetyl-CoA pool. Our results argue against compartition of mitochondrial acetyl-CoA. Instead, they strongly suggest that the acetyl-CoA originating from the simultaneous oxidation of pyruvate and palmitate equilibrates before being distributed over the various pathways of further metabolism.  相似文献   

8.
Addition of epinephrine to primary cultured adult rat hepatocytes stimulated their DNA synthesis dose-dependently, especially in presence of insulin and epidermal growth factor. This effect of epinephrine was strongly inhibited by an alpha 1-antagonist, prazosin, but not by a beta-antagonist, propranolol, and was also slightly inhibited by an alpha 2-antagonist, yohinbin. These results indicate that the stimulation of DNA synthesis of hepatocytes by epinephrine is mediated predominantly by an alpha 1-action. 12-o-Tetradecanoylphorbol-13-acetate (TPA) or Ca2+-ionophore A-23187 stimulated DNA synthesis of Swiss 3T3 cells, but did not induce DNA synthesis of hepatocytes either singly or in combination. The fact that pretreatment of hepatocytes with TPA caused down-regulation of the stimulatory effect of epinephrine on DNA synthesis of hepatocytes within 15 min suggested that the effect of epinephrine on hepatocytes is mediated by its alpha 1 receptor and that TPA activated protein kinase c in the hepatocytes. Addition of dibutyryl cGMP did not induce DNA synthesis of hepatocytes. Therefore, the alpha 1-action of epinephrine that induce stimulation of DNA synthesis of primary cultured adult rat hepatocytes was apparently not mediated by either activation of phospholipid-dependent protein kinase or Ca2+ mobilization. Possible alternative mechanism was discussed.  相似文献   

9.
The rate of oxidation of 14C-labelled fatty acids and of ketone bodies was measured in isolated pancreatic islets of obese-hyperglycaemic mice (ob/ob). The following main observations were made. 1. Octanoate, palmitate and oleate were all converted into CO2 by the pancreatic islets. Octanoate was oxidized with the highest rate followed by palmitate and oleate. 2. The rate of oxidation of 0.7 mM-palmitate was 3.1 pmol/h per mug drug weight. This was decreased by 50% in the presence of 16.7 mM-glucose. The rate of palmitate oxidation was also inhibited by 2-bromostearate. The palmitate oxidation showed a concentration-dependent increase, which was most marked between 0.25 and 1.0 mM. 3. Octanoate (5 mM) had no effect on the rate of oxidation of 3.3 mM- glucose. 4. Acetoacetate (5 mM) and D-3-hydroxybutyrate (5 mM) were oxidized at rates of 5.9 and 5.4 pmol/h per mug dry weight respectively. These rates were less than 10% of those found in kidney-cortex slices. The magnitude of the oxidation rates found for fatty acids and for ketone bodies suggest that these substrates represent important metabolic fuels for the pancreatic B-cells.  相似文献   

10.
Labelled ketone bodies were produced readily from [U-(14)C]palmitate, [2-(14)C]palmitate and [1-(14)C]glycerol by sheep rumen-epithelial and liver tissues in vitro. On a tissue-nitrogen basis, both tissues had similar capacities for ketogenesis. Palmitate was a ketogenic substrate in both rumen-epithelial tissue and liver, and more of its (14)C appeared in ketone bodies than in the (14)CO(2) liberated. Glycerol was actively metabolized to ketone bodies, but more readily underwent complete oxidation to carbon dioxide; this complete oxidation was most pronounced in rumen-epithelial tissue from ketotic ewes. These experiments with labelled compounds confirm earlier observations that rumen-epithelial tissue, like liver, actively forms ketone bodies from long-chain fatty acids and show further that normal rumen-epithelial tissue can convert palmitate into ketone bodies as readily as into carbon dioxide. Free glycerol, which is metabolized only by liver tissue in non-ruminants, is also metabolized by rumen epithelium. The rumen epithelium thus has unique metabolic capacity among extrahepatic tissues.  相似文献   

11.
Rat-liver mitochondria were incubated with [14C]palmitate in the presence of L-malate, fluorocitrate, and L-carnitine. The specific activities of acetyl groups incorporated into citrate, ketone bodies and acetyl-L-carnitine were measured. During state-4 oxidation of [1--14C]palmitate the specific activity of the acetyl-CoA pool was 1.3-times higher than that of the average acetyl group of palmitate, indicating an incomplete breakdown of the palmitate molecule. Accumulation of carnitine esters was observed in this condition. The acyl moieties of carnitine esters formed during the state-4 oxidation of [U-14C]palmitate or [16(-14)C]palmitate were analysed by radioactive gas-chromatography. Substantial amounts of beta-oxidation intermediates were found. The accumulation of carnitine esters of C6-C14 intermediates can quantitatively explain the high specific activity of the acetyl-CoA pool during the state-4 oxidation of [1(-14)C] palmitate. The localization and control of beta-oxidation are discussed.  相似文献   

12.
The primary aim of this paper was to calculate and report flux control coefficients for mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I) over hepatic ketogenesis because its role in controlling this pathway during the neonatal period is of academic importance and immediate clinical relevance. Using hepatocytes isolated from suckling rats as our model system, we measured CPT I activity and carbon flux from palmitate to ketone bodies and to CO2 in the absence and presence of a range of concentrations of etomoxir. (This is converted in situ to etomoxir-CoA which is a specific inhibitor of the enzyme.) From these data we calculated the individual flux control coefficients for CPT I over ketogenesis, CO2 production and total carbon flux (0.51 +/- 0.03; -1.30 +/- 0.26; 0.55 +/- 0.07, respectively) and compared them with equivalent coefficients calculated by similar analyses [Drynan, L., Quant, P.A. & Zammit, V.A. (1996) Biochem. J. 317, 791-795] in hepatocytes isolated from adult rats (0.85 +/- 0.20; 0.23 +/- 0.06; 1.06 +/- 0.29). CPT I exerts significantly less control over ketogenesis in hepatocytes isolated from suckling rats than those from adult rats. In the suckling systems the flux control coefficients for CPT I over ketogenesis specifically and over total carbon flux (< 0.6) are not consistent with the enzyme being rate-limiting. Broadly similar results were obtained and conclusions drawn by reanalysis of previous data {from experiments in mitochondria isolated from suckling or adult rats [Krauss, S., Lascelles, C.V., Zammit, V.A. & Quant, P.A. (1996) Biochem. J. 319, 427-433]} using a different approach of control analysis, although it is not strictly valid to compare flux control coefficients from different systems. Our overall conclusion is that flux control coefficients for CPT I over oxidative fluxes from palmitate (or palmitoyl-CoA) differ markedly according to (a) the metabolic state, (b) the stage of development, (c) the specific pathway studied and (d) the model system.  相似文献   

13.
Isolated rat hepatocytes rapidly utilized [(14)C]palmitate and, in particular, synthesized large amounts of neutral lipids from palmitate. Incorporation into cellular lipids occurred at a linear rate proportional to the medium concentration of fatty acids. Oxidation of [(14)C]palmitate to CO(2) increased with time and was much slower than palmitate esterification. Since [(14)C]acetate and [(14)C]glucose were oxidized to CO(2) at a linear rate, the lag in fatty acid oxidation to CO(2) did not involve enzymatic steps subsequent to acetate formation. The relative contribution of palmitate to esterification and to CO(2) formation depended upon the molar ratio of palmitate to albumin (v) and the length of incubation. Dibutyryl cyclic AMP (1 mM) reduced the oxidation of palmitate and acetate to CO(2) by about 50 and 90%, respectively, but did not alter palmitate esterification. However, equivalent concentrations of sodium butyrate produced similar decreases in CO(2) formation. Dibutyryl cyclic AMP (1 mM) also stimulated palmitate oxidation to water-soluble products, principally ketone bodies, by 50-100%. Sodium butyrate exerted no effect, while monobutyryl cyclic AMP and cyclic AMP both stimulated this pathway significantly. These results indicate that both v and dibutyryl cyclic AMP regulate the metabolism of fatty acids by isolated hepatocytes and suggest that hormonal stimulation of adenyl cyclase controls hepatic lipid metabolism.  相似文献   

14.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

15.
The role of ketone bodies in myocardial substrate oxidation was examined using freshly isolated Ca2+-tolerant heart myocytes, beta-hydroxybutyrate (beta OHB) inhibited lactate oxidation by the myocytes by 30-60%, and the inhibition was concentration dependent. Palmitate oxidation was also markedly decreased, whereas octanoate oxidation was only minimally affected by the presence of beta OHB. Lactate, octanoate, or palmitate had little, if any, effect on beta OHB oxidation. beta OHB oxidation was reduced by 22-28% in myocytes isolated from chronically diabetic rats, whereas the oxidation of palmitate remained similar to the controls. However, beta OHB still inhibited palmitate oxidation to the same extent as in the control cells. Our data support the role of beta OHB as a physiologic regulator of myocardial substrate metabolism.  相似文献   

16.
In parenchymal liver cells isolated from fed rats, insulin increased the formation of 14CO2 from [1-14C]pyruvate (and presumably the flux through pyruvate dehydrogenase) by 14%. Dichloroacetate, an activator of the pyruvate dehydrogenase complex, stimulated this process by 133%. As judged from the conversion of [2-14C]pyruvate to 14CO2, the tricarboxylic acid cycle activity was not affected by insulin, but it was depressed by dichloroacetate. In hepatocytes from fed rats, incubated with glucose as the only carbon source, dichloroacetate caused a stimulation (31%) of fatty acid synthesis, measured as 3H incorporation from 3H2O into fatty acid, and an increased (134%) accumulation of ketone bodies (acetoacetate + D-3-hydroxybutyrate). Dichloroacetate did not affect ketone body formation from [14C]palmitate, suggesting that the increased accumulation of ketone bodies resulted from acetyl-CoA derived from pyruvate. Insulin stimulated fatty acid synthesis in hepatocytes from fed rats. In the combined presence of insulin plus dichloroacetate, fatty acid synthesis was more rapid than in the presence of either insulin or dichloroacetate, whereas the accumulation of ketone bodies was smaller than in the presence of dichloroacetate alone. Although pyruvate dehydrogenase activity, which is rate-limiting for fatty acid synthesis in hepatocytes from fed rats, is stimulated both by insulin and by dichloroacetate, the reciprocal changes in fatty acid synthesis and ketone body accumulation brought about by insulin in the presence of dichloroacetate suggest that insulin is also involved in the regulation of fatty acid synthesis at a mitochondrial site after pyruvate dehydrogenase, possibly at the partitioning of acetyl-CoA between citrate and ketone body formation.  相似文献   

17.
Metabolism of palmitate in cultured rat Sertoli cells   总被引:1,自引:0,他引:1  
Isolated rat Sertoli cells were incubated in the presence of [1-14C]palmitate at a cell concentration of 1.54 +/- 0.31 mg protein/flask (n = 7). The oxidation of palmitate was concentration dependent and maximal oxidation was obtained at 0.35 mM-palmitate. At a saturating concentration of palmitate the oxidation was linear for at least 6 h. About 65% of the total amount of palmitate oxidized during 5 h at 0.52 mM-palmitate (109 +/- 44 nmol/flask, n = 5) was recovered as CO2 and the rest as acid-soluble compounds. Almost all radioactive acid-soluble compounds which were secreted by the Sertoli cells were shown to be 3-hydroxybutyrate and acetoacetate. The palmitate recovery in cellular lipids and triacylglycerols was 9.4 +/- 5.1 nmol/flask (n = 5) and 3.5 +/- 2.8 nmol/flask (n = 5) respectively. Addition of glucose had no significant effect on palmitate oxidation but caused a 9-fold increase in esterification of palmitate into triacylglycerols. We conclude that cultured rat Sertoli cells can oxidize palmitate to CO2 and ketone bodies and that fatty acids appear to be a major energy substrate for these cells.  相似文献   

18.
The aim was to establish whether increased cardiac fatty acid oxidation in hyperthyroidism is due to direct alterations in cardiac metabolism which favour fatty acid oxidation and/or whether normal regulatory links between changes in glucose supply and fatty acid oxidation are dysfunctional. Euthyroid rats were sampled in the absorptive state or after 48 h starvation. Rats were rendered hyperthyroid by injection of tri-iodothyronine (1000 microg/kg body wt. per day; 3 days). We evaluated the regulatory significance of direct effects of hyperthyroidism by measuring rates of palmitate oxidation in the absence or presence of glucose using cardiac myocytes. The results were examined in relation to the activity/regulatory characteristics of cardiac carnitine palmitoyltransferase (CPT) estimated by measuring rates of [3H]palmitoylcarnitine formation from [3H]carnitine and palmitoyl-CoA by isolated mitochondria. To define the involvement of other hormones, we examined whether hyperthyroidism altered basal or agonist-stimulated cardiac cAMP concentrations in cardiac myocytes and whether the effects of hyperthyroidism could be reversed by 24 h exposure to insulin infused subcutaneously (2 i. u. per day; Alzet osmotic pumps). Rates of 14C-palmitate oxidation (to 14CO2) by cardiac myocytes were significantly increased (1.6 fold; P< 0.05) by hyperthyroidism, whereas the percentage suppression of palmitate oxidation by glucose was greatly diminished. Cardiac CPT activities in mitochondria from hyperthyroid rats were 2-fold higher and the susceptibility of cardiac CPT activity to inhibition by malonyl-CoA was decreased. These effects were not mimicked by 48 h starvation. The decreased susceptibility of cardiac CPT activities to malonyl-CoA inhibition in hyperthyroid rats was normalised by 24 h exposure to elevated insulin concentration. Acute insulin addition did not influence the response to glucose in cardiac myocytes from euthyroid or hyperthyroid rats and basal and agonist-stimulated cAMP concentrations were unaffected by hyperthyroidism in vivo. The data provide insight into possible mechanisms by which hyperthyroidism facilitates fatty acid oxidation by the myocardium, identifying changes in cardiac CPT activity and malonyl-CoA sensitivity that would be predicted to render cardiac fatty acid oxidation less sensitive to external factors influencing malonyl-CoA content, and thereby to favour fatty acid oxidation. The increased CPT activity observed in response to hyperthyroidism may be a consequence of an impaired action of insulin but occurs through a cAMP-independent mechanism.  相似文献   

19.
Isolated hepatocytes from fasted rats were used to study the effects of lactate on palmitate metabolism. Lactate was found to stimulate fatty acid esterification and citric acid cycle oxidation and to inhibit ketone body synthesis. These effects of lactate were largely maintained when gluconeogenesis was inhibited with either quinolinate or perfluorosuccinate, but were overcome by α-cyano-4-hydroxycinnamate. However, the responses of hepatocytes to lactate could be restored in the presence of α-cyano-4-hydroxycinnamate by the further addition of propionate. The stimulation of triacylglycerol synthesis by lactate was not associated with an increase in the concentration of glycerol 3-phosphate. Rather, there was a correlation between flux through the citric acid cycle and the rate of triacylglycerol synthesis. In all instances reduction of ketone body formation in the presence of lactate was accompanied by a stimulation of citric acid cycle oxidation.  相似文献   

20.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号