首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim NK  Joh JH  Park HR  Kim OH  Park BY  Lee CS 《Proteomics》2004,4(11):3422-3428
Skeletal muscle is an heterogeneous tissue with various biochemical and physical properties of several fiber types. In this study, we carried out the comparative study of protein expression patterns in white and red muscles using two-dimensional gel electrophoresis (2-DE). From more than 500 protein spots detected on each 2-DE gel, we screened five proteins that were differentially expressed between white and red muscles. Using peptide mass fingerprint and tandem mass spectrometry analysis these proteins were identified as myoglobin, two slow-twitch isoforms of myosin light chain and two small heat shock proteins (HSP20 and HSP27). The protein levels of myoglobin, myosin light chain and HSP20 were higher in red muscle, whereas HSP27 was higher in white muscle. In addition, genes of the identified proteins were cloned and their mRNAs were examined. Positive correlations between protein content and their mRNA levels were observed in white and red muscle. These results may provide us with valuable information to understand the different expression profiling between white and red muscle at the protein level.  相似文献   

2.
We have characterized the structure and expression of rodent mRNAs encoding the fast and slow skeletal muscle isoforms of the contractile regulatory protein, troponin I (TnIfast and TnIslow). TnIfast and TnIslow cDNA clones were isolated from mouse and rat muscle cDNA clone libraries and were used as isoform-specific probes in Northern blot and in situ hybridization studies. These studies showed that the TnIfast and TnIslow mRNAs are expressed in skeletal muscle, but not cardiac muscle or other tissues, and that they are differentially expressed in individual muscle fibers. Fiber typing on the basis of in situ hybridization analysis of TnI isoform mRNA content showed an excellent correlation with fiber type as assessed by myosin ATPase histochemistry. These results directly demonstrate that the differential expression of skeletal muscle TnI isoforms in the various classes of vertebrate striated muscle cells is based on gene regulatory mechanisms which control the abundances of specific TnI mRNAs in individual muscle cells. Both TnIfast and TnIslow mRNAs are expressed, at comparable levels, in differentiated cultures of rat L6 and mouse C2 muscle cell lines. Thus, although neuronal input has been shown to be an important factor in determining fast versus slow isoform-specific expression in skeletal muscle, both TnIfast and TnIslow genes can be expressed in muscle cells in the absence of nerve. Comparison of the deduced rodent TnI amino acid sequences with previously determined rabbit protein sequences showed that residues with potential fast/slow isoform-specific function are present in several discrete clusters, two of which are located near previously identified actin and troponin C binding sites.  相似文献   

3.
4.
Increased skeletal muscle apoptosis has been associated with a number of conditions including aging, disuse, and cardiovascular disease. Skeletal muscle is a complex tissue comprised of several fiber types with unique properties. To date, no report has specifically examined apoptotic differences across muscles or fiber types. Therefore, we measured several apoptotic indices in healthy rat red (RG) and white gastrocnemius (WG) muscle, as well as examined the expression of several key proteins across fiber types in a mixed muscle (mixed gastrocnemius). The protein content of apoptosis-inducing factor (AIF), apoptosis repressor with caspase recruitment domain (ARC), Bax, Bcl-2, cytochrome c, heat shock protein 70 (Hsp70), and second mitochondria-derived activator of caspases (Smac) were significantly (P < 0.05) higher in RG vs. WG muscle. Cytosolic AIF, cytochrome c, and Smac as well as nuclear AIF were also significantly (P < 0.05) higher in RG compared with WG muscle. In addition, ARC protein expression was related to muscle fiber type and found to be highest (P < 0.001) in type I fibers. Similarly, AIF protein expression was differentially expressed across fibers; however, AIF was correlated to oxidative potential (P < 0.001). Caspase-3, -8, and -9 activity, calpain activity, and DNA fragmentation (a hallmark of apoptosis) were also significantly higher (P < 0.05) in RG compared with WG muscle. Furthermore, total muscle reactive oxygen species generation, as well as Ca(2+)-induced permeability transition pore opening and loss of membrane potential in isolated mitochondria were greater in RG muscle. Collectively, these data suggest that a number of apoptosis-related indices differ between muscles and fiber types. Given these findings, muscle and fiber-type differences in apoptotic protein expression, signaling, and susceptibility should be considered when studying cell death processes in skeletal muscle.  相似文献   

5.
Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to differential expression of the glucose transporter isoforms. Glucose transport, as well as Glut1 and Glut4 protein and mRNA levels, were determined in red and white portions of the quadriceps and gastrocnemius muscles of male Sprague-Dawley rats (body wt. approx. 250 g). Maximal glucose transport (in response to 100 nM-insulin) in the perfused hindlimb was 3.6 times greater in red than in white muscle. Red muscle contained approx. 5 times more total Glut4 protein and 2 times more Glut4 mRNA than white muscle, but there were no differences in the Glut1 protein or mRNA levels between the fibre types. Our data indicate that differences in responsiveness of glucose transport in specific skeletal muscle fibre types may be dependent upon the amount of Glut4 protein. Because this protein plays such an integral part in glucose transport in skeletal muscle, any impairment in its expression may play a role in insulin resistance.  相似文献   

6.
Two myostatin isoforms were identified in Atlantic salmon (Salmo salar) by RT-PCR, and genomic sequences encoding this negative muscle growth factor were for the first time isolated from a nonmammalian species. Salmon myostatin isoform I is transcribed in white skeletal muscle as a 2346-nucleotide mRNA species that encodes a precursor protein of 373 amino acids. Salmon myostatin I shows 93% sequence identity with isoform II which was isolated from white muscle as a partial cDNA sequence of 1409 nucleotides. In contrast to the restricted gene expression of myostatin in mammals, salmon myostatin I and II mRNAs were identified by RT-PCR in multiple tissues, including white muscle, intestine, brain, gills, tongue and eye. In addition, isoform I mRNA was found in red skeletal muscle, heart, spleen, and ovarian tissue. Using polyclonal antibodies against both isoforms, a 55-kDa precursor protein was detected by Western blot analysis in the red and white skeletal muscle, heart, intestine, and brain. Immunoreactive peptides of 35-40 kDa were identified in the gills, tongue, spleen, and head kidney, while the 25-kDa mature myostatin was found in the eye and serum, and in vitro expressed in rabbit reticulocyte lysate. Salmon myostatin was immunohistochemically localized in the sarcoplasma of red and white muscle fibres, in intestinal epithelial cells, at the basis of the branchial primary lamellae, and in odontoblasts and ameloblasts of the tongue teeth. The results indicate that the role of fish myostatin may not be restricted to muscle growth regulation, but may have additional functions similar to the growth/differentiation factor-11 in mammals.  相似文献   

7.
8.
A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.  相似文献   

9.
10.
A mutually subtracted RNA fingerprinting (SuRF) method has been developed that allows efficient identification of differentially expressed sequence tags between two samples. Mutual subtractions of two RNA samples are achieved by first synthesizing cDNAs using oligo(dT) coupled with magnetic beads which are then reciprocally hybridized to starting RNA samples to remove common mRNAs between them. The second step involves differential fingerprinting of the subtracted RNA samples by polymerase chain reaction with specially designed degenerate primers. SuRF was applied to identify alteration in gene expression pertinent to osteogenic sarcoma which was achieved by employing the method between FOB (an immortalized fetal osteoblast) and MG63 (an osteosarcoma) cell lines. An estimated 10% of the total expressed genes in these two cell types were screened by the method. This analysis identified 96 differentially expressed sequences, none of which was identified repeatedly. A subset of these sequences was subsequently confirmed to have differential expression between the two cell types. Removal of common mRNAs prior to differential display should diminish redundant identification of abundant genes and increase the chance of identifying rare differentially expressed genes.  相似文献   

11.
12.
A cDNA clone for a Xenopus laevis skeletal muscle beta-tropomyosin (beta-TMad) isoform was isolated from an adult skeletal muscle cDNA library. Sequence analysis revealed that this clone corresponded to a second beta-tropomyosin mRNA distinct from the one that was previously characterized (beta-TMemb). The two skeletal beta-TM mRNAs originate from distinct genes and are differentially expressed during development. Beta-TMemb mRNA is expressed only in the somites of the early embryo while beta-TMad mRNA is expressed in pre-metamorphic tadpoles and adult skeletal muscles. We have isolated the promoter region of the beta-TMemb gene and shown that a DNA construct containing 2.9 kb of promoter region is properly expressed after injection in the embryo.  相似文献   

13.
14.
15.
Total creatine (Cr(total) = phosphocreatine + creatine) concentrations differ substantially among mammalian skeletal muscle. Because the primary means to add Cr(total) to muscle is uptake of creatine through the sodium-dependent creatine transporter (CrT), differences in creatine uptake and CrT expression could account for the variations in [Cr(total)] among muscle fiber types. To test this hypothesis, hindlimbs of adult rats were perfused with 0.05-1 mM [(14)C]creatine for up to 90 min. Creatine uptake rates at 1 mM creatine were greatest in the soleus (140 +/- 8.8 nmol x h(-1) x g(-1)), less in the red gastrocnemius (117 +/- 8.3), and least in the white gastrocnemius (97 +/- 10.7). These rates were unaltered by time, insulin concentration, or increased perfusate sodium concentration. Conversely, creatine uptake rates were correspondingly decreased among fiber types by lower creatine and sodium concentrations. The CrT protein content by Western blot analysis was similarly greatest in the soleus, less in the red gastrocnemius, and least in the white gastrocnemius, whereas CrT mRNA was not different. Creatine uptake rates differ among skeletal muscle fiber sections in a manner reasonably assigned to the 58-kDa band of the CrT. Furthermore, creatine uptake rates scale inversely with creatine content, with the lowest uptake rate in the fiber type with the highest Cr(total) and vice versa. This suggests that the creatine pool fractional turnover rate is not common across muscle phenotypes and, therefore, is differentially regulated.  相似文献   

16.
Huang TH  Zhu MJ  Li XY  Zhao SH 《PloS one》2008,3(9):e3225
MiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates. Comparative expression profiling across samples of longissimus muscle collected from 33-day and 65-day post-gestation fetuses, as well as adult pigs, identified 140 differentially expressed miRNAs amongst the age groups investigated. The differentially expressed miRNAs showed seven distinctive types of expression patterns, suggesting possible involvement in certain biological processes. Five of the differentially expressed miRNAs were validated using real-time PCR. In silico analysis of the miRNA-mRNA interaction sites suggested that the potential mRNA targets of the differentially expressed miRNAs may play important roles in muscle growth and development.  相似文献   

17.
Xu Y  Yu W  Feng X  Xie H  Xiong Y 《DNA and cell biology》2012,31(1):98-105
Suppression subtractive hybridization was performed to detect the differences in gene expression of porcine longissimus dorsi muscles between Large White and Chinese Meishan pigs. An upregulated gene in Large White that shared high homology with human muscle glycogen phosphorylase (PYGM) was identified. The porcine PYGM gene contains an open reading frame encoding 842 amino acid residues with 26 and 283 nucleotides in the 5' and 3' untranslated regions, respectively. Tissue distribution analysis indicated that porcine PYGM mRNAs are highly expressed in all tissues. Expression pattern of PYGM was similar in the two breeds. Both breeds had the highest expression levels when 120 days old (p<0.01), and PYGM was upregulated during skeletal muscle development. A similar expression pattern of PYGM in protein level was also observed by differential proteome analysis of skeletal muscle development using two-dimensional gel electrophoresis and mass spectroscopy. The mRNA abundance of PYGM in Large White was higher than Meishan at all four stages (p<0.05). Moreover, a G/T mutation in exon 8 was identified and association analysis with meat quality traits showed that it was significantly associated with lean meat percentage (p<0.05). Our data may provide further insight into the molecular mechanisms responsible for breed-specific differences in porcine growth and meat quality.  相似文献   

18.
19.
Polymorphism of myosin among skeletal muscle fiber types   总被引:2,自引:1,他引:1       下载免费PDF全文
An immunocytochemical approach was used to localize myosin with respect to individual fibers in rat skeletal muscle. Transverse cryostat sections of rat diaphragm, a fast-twitch muscle, were exposed to fluorescein-labeled immunoglobulin against purified chicken pectoralis myosin. Fluorescence microscopy revealed a differential response among fiber types, identified on the basis of mitochondrial content. All white and intermediate fiber but only about half of the red fiber reacted with his antimyosin. In addition, an alkali-stable ATPase had the same pattern of distribution among fibers, which is consistent with the existence of two categories of red fibers. The positive response of certain red fibers indicates either that their myosin has antigenic determinants in common with "white" myosin, or that the immunogen contained a "red" myosin. Myosin, extracted from a small region of the pectorlis which consists entirely of white fibers, was used to prepare an immunoadsorbent column to isolate antibodies specific for white myosin. This purified anti-white myosin reacted with the same fibers of the rat diaphragm that had reacted with the white, intermediate, and some red fibers are sufficiently homologous to share antigenic determinants. In a slow-twitch muscle, the soleus, only a minority of the fiber reacted with antipectoralis myosin. The majority failed to respond; hence, they are not equivalent to intermediate fibers of the diaphragm; despite their intermediate mitochondrial content. Immunocytochemical analysis of two different musles of the rat has demonstrated that more than one isoenzyme of myosin can exist in a single muscle, and that individual fiber types can be recognized by immunological differences in their myosin. We conclude that, in the rat diaphragm, there are at least two immunochemically distinct types of myosin and four types of muscle fibers: white, intermediate, and two red. We suggest that these fibers correspond to the four types of motor units described by Burke et al. (Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac, III 1973. J. Physiol. (Lond) 234:723-748.)in the cat gastrocnemius.`  相似文献   

20.
Three full-length complementary DNA (cDNA) clones were isolated encoding the skeletal myosin light chain 1 (MLC1; 1237 bp), myosin light chain 2 (MLC2; 1206 bp) and myosin light chain 3 (MLC3; 1079 bp) from the fast white muscle cDNA library of mandarin fish Siniperca chuatsi. The sequence analysis indicated that MLC1 and MLC3 were not produced from differentially spliced messenger RNAs (mRNA) as reported in birds and rodents but were encoded by different genes. The MLC2 encodes 170 amino acids, which include four EF-hand (helix-loop-helix) structures. The primary structures of the Ca(2+)-binding domain were well conserved among the MLC2s of seven other fish species. The ontogenetic expression analysis by real-time PCR showed that the three light-chain mRNAs were first detected in the gastrula stage, and their expression increased from the tail bud stage to the larval stage. All three MLC mRNAs showed longitudinal expression variation in the fast white muscle of S. chuatsi, especially MLC1 which was highly expressed at the posterior area. Taken together, the study provides a better understanding about the MLC gene structure and their expression pattern in muscle development of S. chuatsi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号