首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species distribution patterns have been explained by Hutchinson's niche theory, metapopulation theory and source-sink theory. Empirical verification of this framework, however, remains surprisingly scant. In this paper, we test the hypothesis that landscape characteristics (patch size and connectivity), aerial dispersal ability and niche breadth interact in explaining distribution patterns of 29 spider species inhabiting fragmented grey dunes. Distribution patterns only depended on aerial dispersal potential, and the interaction between patch connectivity and area. Niche breadth, measured as the degree of habitat specialisation in the total coastal dune system, did not contribute to the observed distribution patterns. Additional variation in patch occupancy frequency was strongly species-dependent and was determined by different responses to the degree of patch connectivity for ballooning dispersal. Results from this study suggest that dispersal ability largely affects our perception of a species "fundamental niche", and that source-sink and metapopulation dynamics may have a major impact on the distribution of species. From a conservation point of view, specialised (and hence intrinsically rare) species can be predicted to become rarer if fragmentation increases and connectivity decreases. This study is, to our knowledge, one of the few linking species distribution (and not patch occupancy, species diversity or richness) to landscape ecological (patch connectivity and area) and auto-ecological (niche breadth, dispersal potential) features.  相似文献   

2.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

3.
Abstract. For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plant species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as occurrence of 24 individual species were related to patch area and connectivity measures. Connectivity was defined as the amount of forest habitat around patches within three zones up to 1000 m. Plant categories were distinguished by habitat type and dispersal mechanism. The results showed that number of total species and number of species of all habitat and dispersal categories increased with area. The occurrence of ten individually studied species were also positively related to area. Most of them were interior species. The number of zoochorous species increased with increasing connectivity. Also occurrence of ten individually studied species were affected by connectivity. Interior zoochorous species showed the highest percentage of affected species. The relationship of interior, animal-dispersed plants to connectivity can be explained by the limited distances covered by their dispersal agents (forest birds and ants) in a non-forest habitat. Also, some anemochorous plants appeared to be affected by connectivity, especially those with heavy seeds and potentially short distance dispersal. As not all species within a certain dispersal or habitat category react similar to area or isolation, it is suggested that differences in underlying processes of fragmentation such as local extinction and colonization need more focus.  相似文献   

4.
Quantifying dispersal is fundamental to understanding the effects of fragmentation on populations. Although it has been shown that patch and matrix quality can affect dispersal patterns, standard metapopulation models are usually based on the two basic variables, patch area and connectivity. In 2004 we studied migration patterns among 18 habitat patches in central Spain for the butterfly Iolana iolas, using mark–release–recapture methods. We applied the virtual migration (VM) model and estimated the parameters of emigration, immigration and mortality separately for males and females. During parameter estimation and model simulations, we used original and modified patch areas accounting for habitat quality with three different indices. Two indices were based on adult and larval resources (flowers and fruits) and the other one on butterfly density. Based on unmodified areas, our results showed that both sexes were markedly different in their movements and mortality rates. Females emigrated more frequently from patches, but males that emigrated were estimated to move longer daily dispersal distances and suffer higher mortality than females during migration. Males were more likely to emigrate from small than from large patches, but patch area had no significant effect on female emigration. The effects of area on immigration rate and the within-patch mortality were similar in both sexes. Based on modified areas, the estimated parameter values and the model simulation results were similar to those estimated using the unmodified patch areas. One possible reason for the failure to significantly improve the parameter estimates of the VM model is the fact that resource quantity and butterfly population sizes were strongly correlated with patch area. Our results suggest that the standard VM modelling approach, based on patch area and connectivity, can provide a realistic picture of the movement patterns of I. iolas .  相似文献   

5.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

6.
Gene flow and functional connectivity in the natterjack toad   总被引:6,自引:0,他引:6  
Functional connectivity is a key factor for the persistence of many specialist species in fragmented landscapes. However, connectivity estimates have rarely been validated by the observation of dispersal movements. In this study, we estimated functional connectivity of a real landscape by modelling dispersal for the endangered natterjack toad (Bufo calamita) using cost distance. Cost distance allows the evaluation of 'effective distances', which are distances corrected for the costs involved in moving between habitat patches in spatially explicit landscapes. We parameterized cost-distance models using the results of our previous experimental investigation of natterjack's movement behaviour. These model predictions (connectivity estimates from the GIS study) were then confronted to genetic-based dispersal rates between natterjack populations in the same landscape using Mantel tests. Dispersal rates between the populations were inferred from variation at six microsatellite loci. Based on these results, we conclude that matrix structure has a strong effect on dispersal rates. Moreover, we found that cost distances generated by habitat preferences explained dispersal rates better than did the Euclidian distances, or the connectivity estimate based on patch-specific resistances (patch viscosity). This study is a clear example of how landscape genetics can validate operational functional connectivity estimates.  相似文献   

7.
It has been increasingly recognized that landscape matrices are an important factor determining patch connectivity and hence the population size of organisms living in highly fragmented landscapes. However, most previous studies estimated the effect of matrix heterogeneity using prior information regarding dispersal or habitat preferences of a focal organism. Here we estimated matrix resistance of harvest mice in agricultural landscapes using a novel pattern‐oriented modeling with Bayesian estimation and no prior information, and then conducted model validation using data sets independent from those used for model construction. First, we investigated the distribution patterns of harvest mice for approximately 400 habitat patches, and estimated matrix resistance for different matrix types using statistical models incorporating patch size, patch environment, and patch connectivity. We used Bayesian estimation with a Markov chain Monte Carlo algorithm, and searched for appropriate matrix resistance that best explained the distribution pattern. Patch connectivity as well as patch quality was an important determinant of local population size for the harvest mice. Moreover, matrix resistance was far from uniform, with rice and crop fields exhibiting low resistance and forests, creeks, roads and residential areas showing much higher resistance. The deviance explained by this model (heterogeneous matrix model) was much larger than that obtained by the model with no consideration of matrix heterogeneity (homogeneous matrix model). Second, we obtained distribution data from five additional landscapes that were more fragmented than that used for model construction, and used them for model validation. The heterogeneous matrix model well predicted the population size for four out of five landscapes. In contrast, the homogeneous model considerably overestimated population sizes in all cases. Our approach is widely applicable to species living in fragmented landscapes, especially those for which prior information regarding movement or dispersal is difficult to obtain.  相似文献   

8.
Aerial dispersal by ballooning is a passive flight, by which wind drag generates an upward lift on a silk thread. It is likely to reflect an aerial lottery, in which the absence of flight direction control is a serious cost for long-distance dispersal in a fragmented landscape. For species occurring in one patchily distributed habitat type, dispersal should evolve in a different way from morphological traits, directly linked to active dispersal. Therefore, we expect that if the risk of landing in an unsuitable habitat is lower than the probability of reaching a suitable habitat, selection should benefit a well-developed ballooning behaviour. We investigated interspecific variation in the ballooning-initiating tiptoe behaviour as it is linked to spider dispersal performance. Our results indeed indicate that ballooning performance is negatively related to habitat specialization in spiders from patchy grey dunes, so habitat specialists are characterized by poorly developed dispersal behaviour. These findings are concordant with recent insights that dispersal is selected as risk spreading in generalists, while it is selected against in specialist species.  相似文献   

9.
Abstract Integration of habitat heterogeneity into spatially realistic metapopulation approaches reveals the potential for key cross-scale interactions. Broad-scale environmental gradients and land-use practices can create autocorrelation of habitat quality of suitable patches at intermediate spatial scales. Patch occupancy then depends not only on habitat quality at the patch scale but also on feedbacks from surrounding neighborhoods of autocorrelated patches. Metapopulation dynamics emerge from how demographic and dispersal processes interact with relevant habitat heterogeneity. We provide an empirical example from a metapopulation of round-tailed muskrats (Neofiber alleni) in which habitat quality of suitable patches was spatially autocorrelated most strongly within 1,000 m, which was within the expected dispersal range of the species. After controlling for factors typically considered in metapopulation studies—patch size, local patch quality, patch connectivity—we use a cross-variogram analysis to demonstrate that patch occupancy by muskrats was correlated with habitat quality across scales ≤1,171 m. We also discuss general consequences of spatial heterogeneity of habitat quality for metapopulations related to potential cross-scale interactions. We focus on spatially correlated extinctions and metapopulation persistence, hierarchical scaling of source–sink dynamics, and dispersal decisions by individuals in relation to information constraints.  相似文献   

10.
Lack of landscape connectivity and habitat loss is major threats to biodiversity and ecosystem integrity in nature reserves aimed at conservation. In this study, we used structural pattern and functional connectivity metrics to analyze the spatial patterns and landscape connectivity of habitat patches for the Shangyong sub-reserve of the Xishuangbanna Nature Reserve from 1970, 1990, and 2000. On the basis of vegetation and land cover data, we applied the equivalent connected area ECA(PC) indicator to analyze the changes in forest connectivity. Four distance thresholds (2, 4, 8, 12 km) were considered to compare the patch importance of connectivity by dECA values. The results showed the declining trends of landscape connectivity measured by ECA(PC) index from 1970 to 2000. The importance of connectivity in each forest patch varied with the increment of dispersal distances at the patch level, and some important habitat patches, which exhibit a potential to enhance landscape connectivity, should be given more attention. The least-cost pathways based on network structure were displayed under four dispersal distances in three periods. The results showed that the number of paths among the fragments of forest patches exhibited radical increases for larger dispersal distances. Further correlation analyses of AWF, ECA (IIC), and ECA (PC) showed the weakest and least-frequent correlations with the structural pattern indices, while H presented more significant correlations with the PD fragmentation metric. Furthermore, Kendall's rank correlations between the forest patch area and functional connectivity indicators showed that dECA (PC) and dAWF indicators should provided the area-based prioritization of habitat patches. Moreover, the low-rank correlations showed that dF and dLCP can be considered as effective and appropriate indicators for the evaluation of habitat features and network patterns.  相似文献   

11.
Theory predicts source-sink dynamics can occur in species with the ideal preemptive distribution but not with the ideal free distribution. Source-sink dynamics can also occur in species with passive dispersal, in which a fixed fraction of the population disperses each generation. However, in nature, dispersal often approximates random diffusion rather than ideal choices or fixed probabilities. Here, I ask which dispersal system occurred in a butterfly (Euphydryas editha) known to have source-sink dynamics. The study used 13 experimental sites, where vacant and occupied habitat patches were juxtaposed. I estimated movement during the flight season and tested hypotheses about the type of dispersal system. Ideal free and ideal preemptive models were rejected because per capita movement rates were density independent. Passive dispersal was rejected because per capita rates were related to patch area and habitat preference. The diffusion model best explained the data because it predicted both the area relationship and an odd feature of the habitat preference: immigration was not higher in preferred habitat; rather, emigration was lower. The diffusion model implied that source-sink dynamics were driven by diffusion from areas of high to low population density. Existing source-sink theory assumes fine-scale patchiness, in which animals have perfect knowledge and ease of mobility. The results from the butterfly suggest that source-sink dynamics arise at coarser spatial scales, where diffusion models apply.  相似文献   

12.
Natal dispersal has profound consequences for populations through the movement of individuals and genes. Habitat fragmentation reduces structural connectivity by decreasing patch size and increasing isolation, but understanding of how this impacts dispersal and the functional connectivity of landscapes is limited because many studies are constrained by the size of the study areas or sample sizes to accurately capture natal dispersal. We quantified natal dispersal probability and natal dispersal distances in a small migratory shorebird, the Southern Dunlin Calidris alpina schinzii, with data from two extensively monitored endangered metapopulations breeding in Sweden and Finland. In both metapopulations philopatry was strong, with individuals returning to or close to their natal patches more often than expected by chance, consistent with the patchy distribution of their breeding habitat. Dispersal probabilities were lower and dispersal distances were shorter in Sweden. These results provide a plausible explanation for the observed inbreeding and population decline of the Swedish population. The differences between Sweden and Finland were explained by patch‐specific differences. Between‐patch dispersal decreased with increasing natal patch size and distance to other patches. Our results suggest that reduced connectivity reduces movements of the philopatric Dunlin, making it vulnerable to the effects of inbreeding. Increasing connectivity between patches should thus be one of the main goals when planning future management. This may be facilitated by creating a network of suitably sized patches (20–100 ha), no more than 20 km apart from each other, from existing active patches that may work as stepping stones for movement, and by increasing nest success and pre‐fledging survival in small patches.  相似文献   

13.
Landscape connectivity is a key issue of nature conservation and distance parameters are essential for the calculation of patch level metrics. For such calculations the so-called Euclidean and the least cost distance are the most widespread models. In the present work we tested both distance models for landscape connectivity, using connectivity metrics in the case of a grassland mosaic, and the ground beetle Pterostichus melas as a focal species. Our goal was to explore the dissimilarity between the two distance models and the consequent divergence from the calculated values of patch relevance in connectivity. We found that the two distance models calculated the distances similarly, but their estimations were more reliable over short distances (circa 500 m), than long distances (circa 3000 m). The variability in the importance of habitat patches (i.e. patch connectivity indices) was estimated by the difference between the two distance models (Euclidean vs. least cost) according to the patch size. The location of the habitat patches in the matrix seemed to be a more important factor than the habitat size in the estimation of connectivity. The uncertainty of three patch connectivity indices (Integral Index of Connectivity, Probability of Connectance and Flux) became high above a habitat size of 5 ha. Relevance of patches in maintaining connectivity varied even within small ranges depending on the estimator of distance, revealing the careful consideration of these methods in conservation planning.  相似文献   

14.
Animal movements at large spatial scales are of great importance in population ecology, yet little is known due to practical problems following individuals across landscapes. We studied the whole Norwegian population of a small songbird (ortolan bunting, Emberiza hortulana ) occupying habitat patches dispersed over nearly 500 km2. Movements of colour-ringed males were monitored during ten years, and extensive long-distance dispersal was recorded. More than half of all cases of breeding dispersal took place within one breeding season, and males moved up to 43 km between singing territories, using 1–22 d. Natal dispersal was usually to a habitat patch close to the natal patch, or within the natal patch if it was large. Breeding dispersal movements were often long-distance, beyond neighbouring patches, and up to 11–19 patches were overflown. Movements of at least 6–9 km across areas of unsuitable habitat occurred regularly. The number of patches visited was low (1–4) even though search costs in terms of time spent moving from one site to another were relatively low (often only a few days even for distances >10 km). Most males seemed to use a threshold tactic when choosing a patch, but returns to previously visited patches were recorded, including some cases of commuting. In conclusion, male ortolan buntings have a surprising ability to move quickly at the landscape level, and this resulted in a high connectivity of patches. We discuss our results in relation to optimal searching strategies, in particular the use of within-breeding season versus post-breeding season search, conspecific attraction and adaptive late arrival of young birds.  相似文献   

15.
The Pampa grassland of Argentina is one of the most highly threatened biomes in the world. A high proportion of the original grassland cover has been transformed into land for agriculture or degraded. In the southern part of the region, fragmented semi‐natural grasslands over exposed rock still persist and connectivity between them is assumed to be crucial for maintaining viable populations. We quantified overall connectivity of grassland patches in a sector of the Southern Pampa region, and investigated the degree to which landscape connectivity explains entomophilous plant species assemblages in a subset of patches. We characterized each of the 301 patches in the landscape by their degree of intra‐patch and inter‐patch connectivity based on graph theory, and considering threshold dispersal distances from 100 to 1000 m. We surveyed entomophilous plant species in 39 grassland patches and classified the species in three categories (annual herbs, perennial herbs and shrubs) considering their different growth form and longevity. The influence of connectivity variables on entomophilous plant species assemblages variation was explored using Canonical Correspondence Analysis. Although grassland patches were poorly connected at all threshold distances, some of them were found to be critical for global connectivity. Connectivity significantly explained total, annual‐biennial and shrub assemblages for all threshold dispersal distances (6–13% of total variation). Variation in annual species assemblages was associated with intra‐patch and inter‐patch connectivity at short distance (100 m), while variation in shrub species assemblages was explained by intra‐patch and inter‐patch connectivity for distances between 100 m and 1000 m. This study evidenced the low connectivity of the study system, allowed the identification of critical areas for conservation, and provided valuable information to develop management strategies in increasingly human‐dominated landscapes.  相似文献   

16.
Frank van  Langevelde 《Ecography》2000,23(5):614-622
Studies of effects of landscape pattern on population dynamics should consider the spatial scale at which habitat connectivity varies relative to the spatial scale of the species' behavioral response. In this paper, I investigate the relationship between the degree of connectivity of wooded patches measured at different spatial scales and the colonization of these patches by nuthatch Sitta europaea populations. I used different threshold distances to calculate the degree of habitat connectivity. A threshold distance is the distance beyond which the probability of successfully bridging the distance by dispersing individuals is assumed to decrease rapidly. The sum of the degree of connectivity over all patches in a region provides a measure for the overall degree of connectivity. Based on this measure, I could first give an indication under what conditions species may experience effects of constrained dispersal in that region. Second, the degree of connectivity of the individual patches was related with the observed colonizations of these patches. The degree of habitat connectivity measured for threshold distances of ea 2.4-3 km best explains the colonization probability of unoccupied patches. These threshold distances give an indication of the distances covered by dispersing nuthatches that led to successful colonizations.  相似文献   

17.
Dispersal can be regarded as a process operating both betweenand within patches of suitable habitat. For uncontrolled dispersalprocesses, the risk of crossing the borders of the habitat patchand arriving in the unsuitable landscape matrix will increasewith decreasing patch area, in particular when the distancebetween isolated habitat patches is larger than the species'average dispersal capacity. Ballooning dispersal in spiderscan be considered as a passive dispersal process, in which disperseddistances depend on the prevalent wind velocity. We executeda reaction norm analysis to analyze how dispersal propensityof the salt marsh wolf spider Pardosa purbeckensis dependedon population characteristics (patch size) and the environment(wind velocity). Dispersal propensity was affected by the interactionbetween wind velocity and maternal patch size. Ballooning propensitiesdecreased with decreasing salt marsh size. Interestingly, genotypesfrom large salt marshes show higher ballooning propensitiesunder higher wind velocities, whereas those from small habitatpatches show their highest dispersal propensity under low windvelocities. Crossing reaction norms and subsequently stronggenotype x environment interaction variation was observed inall populations but tended to be lower in genotypes from largesalt marshes. It is likely that this pattern results from differencesin wind velocity–related costs of within-habitat dispersalin salt marshes of different sizes.  相似文献   

18.
Modelling of landscape connectivity is a key point in the study of the movement of populations within a given landscape. For studies focused on the preservation of biodiversity, graph-based methods provide an interesting framework to investigate the landscape influence on population spread processes. Such an approach is described here, based on the mapping of landscape categories in habitat patches, including a diachronic data set describing the population spread within the habitat patches. A minimum planar graph was built by computing spatial distances between all pairs of neighbouring patches. From this structure, two types of analysis are proposed: one focused on the links of the graph and consists in correlating spatial distances and gap indicators computed from the diachronic data. The other was based on the correlations between population data and connectivity metrics at the patch level. As an example, this approach was applied to the spread of the fossorial water vole on the Jura plateau (France), with annual population data covering eleven years from 1989 to 2000. Link analysis allowed to find an optimal set of resistance values used in the least-cost distances computations, and thus to build a relevant graph. From this graph, patch analysis displayed a cyclic correlation between a metric based on potential dispersal flux and the population density, outlining the strong role of landscape connectivity in the population spread. The present study clearly shows that landscape modelling and graph-based approach can produce parameters which are consistent with field observations and thus pave the way to simulating the effect of landscape modification on population dynamics.  相似文献   

19.
Connectivity of habitat patches is crucial for wildlife dispersal and survival, and identifying patches with high importance for maintaining connectivity can aid effective wildlife management. Knowledge of the habitat distribution of the Tibetan antelope in the Altun Mountain National Nature Reserve, which is essential for connectivity analysis, remains limited. We analyzed potential habitat distribution and priority patches using GIS-based habitat suitability modeling with three weighting factors and evaluated the connectivity of habitat patches under four dispersal distance scenarios. Patches with high habitat suitability covered 25.39 % of the total area, and these patches were selected for connectivity analysis as resource patches. Connectivity analysis indicated that, although the overall probability of connectivity (PC) showed an upward trend with increasing dispersal distance, the importance of each patch varied considerably under different dispersal distance scenarios. Transfer analysis of patch numbers between different importance levels revealed that the number of patches becoming less important was higher than the number of patches becoming more important when dispersal distance increased. In addition, nine patches covering 38.49 % of the suitable habitat area were identified as priority patches, in particular the patches near the Kardun and the Karchuka inspection stations. We also found that the habitat distribution of the Tibetan antelope obtained from the suitability model matched the population distribution determined by a field survey. Correlation analysis between patch area and the percentage of PC index value loss (dPC) revealed that the larger patches in this region were more likely to be important for maintaining connectivity.  相似文献   

20.
Petr Dostl 《Ecography》2005,28(6):745-756
In species with fragmented distribution, regional turnover dynamics is given by the processes of local population extinction and patch (re)colonization by migrants spreading from neighboring occupied patches. In plants with dormant stages (e.g. seeds) and limited dispersal capacity, regional dynamics based on dispersal processes can be overridden by pseudo-turnover determined by signals inducing or breaking dormancy (e.g. due to changes in habitat quality) resulting in a low importance of habitat configuration and size.
In this study, I investigated the turnover dynamics of 5 annual plant species growing on ant mounds of Lasius flavus over three years. I analyzed whether the grassland-scale dynamics of these annuals is influenced by dispersal processes, or alternatively, by pseudo-turnover of soil seed populations. For that purpose I 1) searched for populations formed from soil seeds only, 2) compared the relative contribution of the soil seed bank and seed rain for population restoration after disappearance from the vegetation and 3) investigated whether colonization and extinction events are affected by patch isolation. I assumed if population turnover was rather a result of the soil seed bank dynamics then spatial effects would be hard to detect.
In spite of the presence of populations formed from soil seed and the relatively more important soil seed bank for potential population reestablishment, turnover dynamics followed the predictions of metapopulation theory. Population appearance was more probable in larger and less isolated patches. Probability of disappearance increased with decrease of population size that was negatively influenced by the patch size and its isolation. These findings indicate dispersal processes to be important in the turnover dynamics and only limited contribution of soil seed populations. Their small effectiveness is probably related to the low chance of recurrent disturbance on the mound surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号