首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910 catalyzes the decarboxylation of pyrrole-2-carboxylate to stoichiometric amounts of pyrrole and CO2. A unique feature of the homodimeric enzyme is its requirement for an organic acid such as acetate, propionate, butyrate or pimelate. A catalytic mechanism including a cofactor function of the organic acid was proposed. Due to an equilibrium constant of 0.3–0.4 M, the enzyme also catalyzes the reverse carboxylation of pyrrole after the addition of bicarbonate. For the synthesis of pyrrole-2-carboxylate, the reverse reaction was optimized and the equilibrium shifted towards the carboxylate. The product yield was 230 mM (25.5 g/l) pyrrole-2-carboxylate from 300 mM pyrrole in a batch reaction and 325 mM (36.1 g/l) from 400 mM pyrrole in a fed batch reaction, using both whole cells and the purified enzyme in a pH 8.0 reaction mixture with bicarbonate saturation of 1.9 M.  相似文献   

2.
Indolepyruvate decarboxylase, a key enzyme for indole-3-acetic acid biosynthesis, was found in extracts of Enterobacter cloacae. The enzyme catalyzes the decarboxylation of indole-3-pyruvic acid to yield indole-3-acetaldehyde and carbon dioxide. The enzyme was purified to apparent homogeneity from Escherichia coli cells harboring the genetic locus for this enzyme obtained from E. cloacae. The results of gel filtration experiments showed that indolepyruvate decarboxylase is a tetramer with an M(r) of 240,000. In the absence of thiamine pyrophosphate and Mg2+, the active tetramers dissociate into inactive monomers and dimers. However, the addition of thiamine pyrophosphate and Mg2+ to the inactive monomers and dimers results in the formation of active tetramers. These results indicate that the thiamine pyrophosphate-Mg2+ complex functions in the formation of the tetramer, which is the enzymatically active holoenzyme. The enzyme exhibited decarboxylase activity with indole-3-pyruvic acid and pyruvic acid as substrates, but no decarboxylase activity was apparent with L-tryptophan, indole-3-lactic acid, beta-phenylpyruvic acid, oxalic acid, oxaloacetic acid, and acetoacetic acid. The Km values for indole-3-pyruvic acid and pyruvic acid were 15 microM and 2.5 mM, respectively. These results indicate that indole-3-acetic acid biosynthesis in E. cloacae is mediated by indolepyruvate decarboxylase, which has a high specificity and affinity for indole-3-pyruvic acid.  相似文献   

3.
The alpha subunit of the Escherichia coli tryptophan synthase catalyzes the reversible aldolytic reaction: Indole-3-glycerol phosphate in equilibrium indole + glyceraldehyde 3-phosphate. The use of 5-azidoindole as a photoaffinity label has made the generation of a number of enzyme-substrate complexes possible, each with a given degree of saturation of the two postulated indole sites. When assayed in the reverse reaction (indole-3-glycerol phosphate synthesis), samples of alpha subunit treated at concentrations of 5-azidoindole less than or equal to 2 mM show a progressive 30-40% activation. A gradual inactivation occurs only in samples irradiated at concentrations in excess of 2 mM 5-azidoindole, and this inactivation is complete at 8-10 mM. A quantitatively similar activation occurs in the forward reaction (indole synthesis), however inactivation in this case is incomplete, with complexes treated at 8-12 mM 5-azidoindole retaining 30-40% relative activity in this reaction. When treated alpha subunits were assayed for their abilities to complement the beta 2-subunit in the reactions indole + L-serine leads to L-tryptophan + H2O and indole-3-glycerol phosphate + L-serine leads to L-tryptophan + glyceraldehyde 3-phosphate, quantitatively lesser amounts of activation followed by total inactivation are observed over a similar range of 5-azidoindole concentrations.  相似文献   

4.
Indolyl-3-alkane alpha-hydroxylase, a novel tryptophan-metabolizing enzyme, was prepared in crystalline form from soil isolate organism Pseudomonas XA. Emission spectroscopy and atomic absorption analyses of purified enzyme revealed the presence of iron (0.8 mol/mol of protein), and a number of observations supported the presence of heme prosthetic group (1.1 mol/mol of protein). The S20,w value of indolyl-3-alkane alpha-hydroxylase is 10.2 S, and the molecular weight by sedimentation equilibrium ultracentrifugation is 250,000. The E1%280 of the enzyme is 21, and the isoelectric point by isoelectric focusing on ampholine polyacrylamide gel plates is 4.8. The enzyme catalyzes hydroxylation on the side chain of a variety of 3-substituted indole compounds, including certain tryptophan-containing oligopeptides. The reaction product from tryptamine was identified by proton nuclear magnetic resonance and gas chromatography/mass spectroscopy analyses. While the indole ring remained intact, hydroxylation occurred at the side chain carbon adjacent to the ring. Nuclear magnetic resonance studies indicated that hydroxylation always took place at the same position when the substrate was tryptophan methyl ester, tryptophol, indole-3-propionate, or indole-3-butyrate. No other chemical change occurred when these substrates were incubated with the enzyme. The Km value of indolyl-3-alkane alpha-hydroxylase for L-tryptophan is 2.4 X 10(-6) M, at pH 7.2. The enzyme is inhibited by potassium cyanide (0.1 mM) or hydroxylamine (1mM), but not by NaBH4 (25 mM), aminooxyacetic acid (7mM), quinacrine (1 mM), chlortetracycline (1 mM), p-mercuribenzoate (0.1 mM), or ethylenediaminetetraacetate (1 mM). The plasma half-life (t1/2) of indolyl-3-alkane alpha-hydroxylase in tumor-bearing mice is approximately 25 h.  相似文献   

5.
Indole-3-acetic acid (IAA) is produced commonly by plants and many bacteria, however, little is known about the genetic basis involving the key enzymes of IAA biosynthetic pathways from Bacillus spp. IAA intermediates from the Gram-positive spore-forming bacterium Paenibacillus polymyxa E681 were investigated, which showed the existence of only an indole-3-pyruvic acid (IPA) pathway for IAA biosynthesis from the bacterium. Four open reading frames (ORFs) encoding indole-3-pyruvate decarboxylaselike proteins and putative indole-3-pyruvate decarboxylase (IPDC), a key enzyme in the IPA synthetic pathway, were found on the genome sequence database of P. polymyxa and cloned in Escherichia coli DH5alpha. One of the ORFs, PP2_01257, was assigned as probable indole-3-pyruvate decarboxylase. The ORF consisted of 1,743 nucleotides encoding 581 amino acids with a deduced molecular mass of 63,380 Da. Alignment studies of the deduced amino acid sequence of the ORF with known IPDC sequences revealed conservation of several amino acids in PP2_01257, essential for substrate and cofactor binding. Recombinant protein, gene product of the ORF PP2_01257 from P. polymyxa E681, was expressed in E. coli BL21 (DE3) as a glutathione S-transferase (GST)-fusion protein and purified to homogeneity using affinity chromatography. The molecular mass of the purified enzyme showed about 63 kDa, corresponding closely to the expected molecular mass of IPDC. The indole-3-pyruvate decarboxylase activity of the recombinant protein, detected by HPLC, using IPA substrate in the enzyme reaction confirmed the identity and functionality of the enzyme IPDC from the E681 strain.  相似文献   

6.
Enterobacter cloacae, isolated from the rhizosphere of cucumbers, produces large amounts of indole-3-acetic acid. Indolepyruvate decarboxylase, the key enzyme in the biosynthetic pathway of indole-3-acetic acid, catalyses the formation of indole-3-acetaldehyde and carbon dioxide from indole-3-pyruvic acid. The enzyme requires the cofactors thiamine diphosphate and magnesium ions for catalytic activity. Recombinant indolepyruvate decarboxylase was purified from the host Escherichia coli strain JM109. Specificity of the enzyme for the substrates indole-3-pyruvic acid, pyruvic acid, benzoylformic acid, and seven benzoylformic acid analogues was investigated using a continuous optical assay. Stopped-flow kinetic data showed no indication for substrate activation in the decarboxylation reaction of indole-3-pyruvic acid, pyruvic acid or benzoylformic acid. Size exclusion chromatography and small angle X-ray solution scattering experiments suggested the tetramer as the catalytically active state and a pH-dependent subunit association equilibrium. Analysis of the kinetic constants of the benzoylformic acid analogues according to Hansch et al. [Hansch, C., Leo, A., Unger, S.H., Kim, K.H., Nikaitani, D & Lien, E.J. (1973) J. Med. Chem.16, 1207-1216] and comparison with indole-3-pyruvic acid conversion by pyruvate decarboxylases from Saccharomyces cerevisiae and Zymomonas mobilis provided some insight into the catalytic mechanism of indolepyruvate decarboxylase.  相似文献   

7.
A basidiomycete, Coprinus sp. SF-1, was found to produce an L-Trp-oxidizing enzyme by screening from the culture collection of our laboratory. After solubilization by 1 M NaSCN from the particulate fraction of disrupted cells of the strain, the enzyme was purified about 76-fold to essential homogeneity. The enzyme had a molecular mass of about 420 kDa and the subunit molecular mass was 68 kDa. The enzyme contained 1 mol of non-covalently bound FAD per mol of the subunit. It catalyzed the simultaneous reactions of oxidative deamination and oxygenative decarboxylation of L-Trp to form indolepyruvic acid and indole-3-acetamide, the former of which was further oxidized to indole-3-acetic acid. The molar ratio of the respective reaction products was about 9:1. The enzyme specifically oxidized L-Trp, and slightly acted on L-Phe and L-Tyr. The Km for L-Trp was about 0.5 mM in both oxidase and oxygenase reactions. Thus, the enzyme is a novel one and was tentatively designated "L-Trp oxidase (deaminating and decarboxylating)". The optimum pHs of oxidase and oxygenase activities were 7.0 and 9.0, respectively. The optimum temperatures of both activities were 50 degrees C. The enzyme was stable at pH 6.0-10.5 and below 50 degrees C, and at 4 degrees C for 1 year.  相似文献   

8.
A novel enzyme, arylalkyl acylamidase, which shows a strict specificity for N-acetyl arylalkylamines, but not acetanilide derivatives, was purified from the culture broth of Pseudomonas putida Sc2. The purified enzyme appeared to be homogeneous, as judged by native and SDS/PAGE. The enzyme has a molecular mass of approximately 150 kDa and consists of four identical subunits. The purified enzyme catalyzed the hydrolysis of N-acetyl-2-phenylethylamine to 2-phenylethylamine and acetic acid at the rate of 6.25 mumol.min-1.mg-1 at 30 degrees C. It also catalyzed the hydrolysis of various N-acetyl arylalkylamines containing a benzene or indole ring, and acetic acid arylalkyl esters. The enzyme did not hydrolyze acetanilide, N-acetyl aliphatic amines, N-acetyl amino acids, N-acetyl amino sugars or acylthiocholine. The apparent Km for N-acetylbenzylamine, N-acetyl-2-phenylethylamine and N-acetyl-3-phenylpropylamine are 41 mM, 0.31 mM and 1.6 mM, respectively. The purified enzyme was sensitive to thiol reagents such as Ag2SO4, HgCl2 and p-chloromercuribenzoic acid, and its activity was enhanced by divalent metal ions such as Zn2+, Mg2+ and Mn2+.  相似文献   

9.
delta1-piperideine-2-carboxylate reductase of Pseudomonas putida.   总被引:1,自引:1,他引:0       下载免费PDF全文
Pseudomonas putida metabolizes D-lysine to delta 1-piperideine-2-carboxylate and L-pipecolate. The second step of this catabolic pathway is catalyzed by delta 1-piperideine-2-carboxylate reductase. This enzyme was isolated and purified from cells grown on DL-lysine as substrate. The enzyme was very unstable, resulting in low recovery of activity and low purity after a six-step purification procedure. The enzyme had a pH optimum of 8.0 to 8.3. The Km values for delta 1-piperideine-2-carboxylate and NADPH were 0.23 and 0.13 mM, respectively. NADPH at concentrations above 0.15 mM was inhibitory to the enzyme. Delta 1-pyrroline-5-carboxylate, pyroglutamate, and NADH were poor substrates or coenzyme for delta 1-piperideine-2-carboxylate reductase. The enzyme reaction from delta 1-piperideine-2-carboxylate to L-pipecolate was irreversible. EDTA, sodium pyrophosphate, and dithiothreitol at concentrations of 1 mM protected the enzyme during storage. The enzyme was inhibited almost totally by Zn2+, Mn2+, Hg2+ Co2+, and p-chloromercuribenzoate at concentrations of 0.1 mM. The enzyme had a molecular weight of about 200,000. Both D-lysine and L-lysine were good inducers for the enzyme. Neither delta1-piperideine-2-carboxylate nor L-pipecolate was an effective inducer for the enzyme. P. putida cells grew on D-lysine only after a 5- to 8-h lag, which could be abolished by adding a supplement of 0.01% alpha-ketoglutarate or other readily metabolizable compounds. Such a supplement also converted the noncoordinate induction of this enzyme and pipecolate oxidase, both of the D-lysine pathway, to coordinacy. However, this effect was not observed if the enzyme pair was from different pathways of lysine metabolism in this organism (i.e., the D- and L-lysine pathways).  相似文献   

10.
Model systems for the study of photoreactivation have been developed that utilize a variety of indole derivatives. These systems can split uracil cis-syn cyclobutadipyrimidine, either free or in RNA, when irradiated at wave-lengths absorbed only by the indole moiety. The ability of indole compounds to split dimers is closely related to their electronic properties. Those of high electron-donor capacity such as indole, 3-methylindole, indole-3-acetic acid, 5-hydroxytryptophan and tryptophan are good photosensitizers, with efficacy in that order. Indoles with electron-withdrawing substituents such as indole-3-carboxylic acid, indole-3-aldehyde and oxindole are inactive in the monomerization reaction. These findings support the proposed mechanism that the photosensitized monomerization occurs as a result of electron transfer from the excited indole molecules to the pyrimidine bases.Proteins containing fully exposed tryptophan residues (chicken egg white lysozyme and bovine diisopropylphosphoryltrypsin) also cause the splitting of the 14C-labeled dimers under the same conditions. In the case of lysozyme the quantum yield of monomerization is similar to that of free tryptophan. Much of the monomerization ability of lysozyme was lost after the solvent-available tryptophan had been oxidized by treatment with N-bromosuccinimide. Bovine pancreatic ribonuclease A, a protein devoid of tryptophan, failed to exhibit photosensitized monomerization of uracil dimers. The biological implication of these reactions involving a protein with an exposed tryptophan residue is discussed.Although indoles are able to split the dimers in RNA, they fail to photo-reactivate u.v.-damaged TMV-RNA. Indole-3-acetic acid, 3-methylindole and 5-hydroxytryptophan rapidly inactivate viral RNA when irradiated at 313 nm, possibly because of side reactions.  相似文献   

11.
Rat heart ornithine decarboxylate activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase has a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2- on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect upon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rats to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

12.
Z Huang  L Dostal    J P Rosazza 《Journal of bacteriology》1994,176(19):5912-5918
A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity.  相似文献   

13.
Rat heart ornithine decarboxylase activity from isoproterenol-treated rats was inactivated in vitro by reactive species of oxygen generated by the reaction xanthine/xanthine oxidase. Reduced glutathione, dithiothreitol and superoxide dismutase had a protective effect in homogenates and in partially purified ornithine decarboxylase exposed to the xanthine/xanthine oxidase reaction, while diethyldithiocarbamate, which is an inhibitor of superoxide dismutase, potentiated the damage induced by O2? on enzyme activity. Dithiothreitol at concentrations above 1.25 mM had an inhibitory effect oupon supernatant ornithine decarboxylase activity, while at 2.5 mM it was most effective in the recovery of ornithine decarboxylase activity, after the purification of the enzyme by the ammonium sulphate precipitation procedure. The ornithine decarboxylase inactivated by the xanthine/xanthine oxidase reaction showed a higher value of Km and a reduction of Vmax with respect to control activity. The exposure of rates to 100% oxygen for 3 h reduced significantly the isoproterenol-induced heart ornithine decarboxylase activity. The injection with diethyldithiocarbamate 1 h before hyperoxic exposure further reduced heart ornithine decarboxylase activity.  相似文献   

14.
Azospirillum brasilense belongs to the plant growth-promoting rhizobacteria with direct growth promotion through the production of the phytohormone indole-3-acetic acid (IAA). A key gene in the production of IAA, annotated as indole-3-pyruvate decarboxylase (ipdC), has been isolated from A. brasilense, and its regulation was reported previously (A. Vande Broek, P. Gysegom, O. Ona, N. Hendrickx, E. Prinsen, J. Van Impe, and J. Vanderleyden, Mol. Plant-Microbe Interact. 18:311-323, 2005). An ipdC-knockout mutant was found to produce only 10% (wt/vol) of the wild-type IAA production level. In this study, the encoded enzyme is characterized via a biochemical and phylogenetic analysis. Therefore, the recombinant enzyme was expressed and purified via heterologous overexpression in Escherichia coli and subsequent affinity chromatography. The molecular mass of the holoenzyme was determined by size-exclusion chromatography, suggesting a tetrameric structure, which is typical for 2-keto acid decarboxylases. The enzyme shows the highest kcat value for phenylpyruvate. Comparing values for the specificity constant kcat/Km, indole-3-pyruvate is converted 10-fold less efficiently, while no activity could be detected with benzoylformate. The enzyme shows pronounced substrate activation with indole-3-pyruvate and some other aromatic substrates, while for phenylpyruvate it appears to obey classical Michaelis-Menten kinetics. Based on these data, we propose a reclassification of the ipdC gene product of A. brasilense as a phenylpyruvate decarboxylase (EC 4.1.1.43).  相似文献   

15.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

16.
A new enzyme which catalyzes the oxidation of the side chain of tryptophan and other indole derivatives, has been purified to apparent homogeneity from Pseudomonas and crystallized. The overall purification was about 25-fold with a yield of 4.5%. The purified enzyme was apparently homogeneous as judged by polyacrylamide gel electrophoresis. The molecular weight estimated by gel filtration was approximately 280,000 and sedimentation coefficient (S20,w) was 11 by sucrose density gradient ultracentrifugation. The absorption spectra indicated that the enzyme was a hemoprotein. The purified enzyme was shown to catalyze the reaction in which 1 mol each of NH3 and CO2 was formed at the expense of 1 mol each of L-tryptophan and molecular oxygen. Neither peroxidase nor catalase activity was detected in the purified enzyme and no formation of H2O2 was observed during the enzyme reaction. The product(s) of the reaction was unstable but was converted to and was identified as its stable quinoxaline derivative, 2-(3-indolyl)quinoxaline, in the presence of o-phenylenediamine. These results indicate that the product of the reaction was 3-indolylglycoaldehyde or 3-indolylglyoxal. A variety of other indole derivatives such as D-tryptophan, 5-hydroxyl-L-tryptophan, tryptamine, serotonin, melatonin, N-acetyl-L-tryptophan, N-acetyl-L-tryptophanamide, 3-indoleacetamide, 3-indolelactic acid, 3-indolepropionic acid, 3-indoleethanol, and skatole were also substrates.  相似文献   

17.
Cell-free extracts of Rhizobium meliloti contain a soluble lactate dehydrogenase (LDH-EC 1.1.1.27.). This was purified 250-fold by ammonium sulfate precipitation and filtration on different Sephadex gels. This enzyme catalyses the reduction of pyruvate to lactate in the presence of NADH and for the first time we report its ability to reduce indole-3-pyruvic acid (IPyA) to indole-3-lactic acid (ILA). Optimal conditions for activity and Km values for both substrates were determined. In the presence of NAD the reverse reaction could be demonstrated with the aliphatic substrate (lactate), but under our conditions it was not possible to achieve the oxidation of ILA to IPyA. The role of this LDH in the indole metabolism is discussed and a general reaction scheme is suggested.  相似文献   

18.
delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.  相似文献   

19.
2-Hydroxychromene-2-carboxylate isomerase activity was found in cell-free systems from bacteria that degrade naphthalenesulfonates. The enzyme fromPseudomonas testosteroni A3 was activated by incubation with glutathione, dithiothreitol or mercaptoethanol. The highest enzyme activity was found after preincubation of the enzyme with glutathione at alkaline pH-values. A highly purified enzyme preparation converted besides 2-hydroxychromene-2-carboxylate also 2-hydroxybenzo[g]chromene-2-carboxylate (the 2-hydroxychromene-2-carboxylate formed from 1,2-dihydroxyanthracen). The addition of various metal ions or EDTA did not significantly change the catalytic activity of the enzyme. A possible reaction mechanism is proposed.Abbreviations 2,5-DHCCA 2,5-dihydroxychromene-2-carboxylate - 2,6-DHCCA 2,6-dihydroxychromene-2-carboxylate - 1,2-DHN 1,2-dihydroxynaphthalene - GSH glutathione - 2HBCCA 2-hydroxybenzo[g]chromene-2-carboxylate - HBP 2-hydroxybenzalpyruvate - HBPA 2-hydroxybenzalpyruvate aldolase - 2HCCA 2-hydroxychromene-2-carboxylate - 2HCCAI 2-hydroxychromene-2-carboxylate isomerase - 2NS naphthalene-2-sulfonate - Rt retention time  相似文献   

20.
We found the occurrence of 4-hydroxybenzoate decarboxylase in Enterobacter cloacae P240, isolated from soils under anaerobic conditions, and purified the enzyme to homogeneity. The purified enzyme was a homohexamer of identical 60 kDa subunits. The purified decarboxylase catalyzed the nonoxidative decarboxylation of 4-hydroxybenzoate without requiring any cofactors. Its K m value for 4-hydroxybenzoate was 596 μM. The enzyme also catalyzed decarboxylation of 3,4-dihydroxybenzoate, for which the K m value was 6.80 mM. In the presence of 3 M KHCO3 and 20 mM phenol, the decarboxylase catalyzed the reverse carboxylation reaction of phenol to form 4-hydroxybenzoate with a molar conversion yield of 19%. The K m value for phenol was calculated to be 14.8 mM. The gene encoding the 4-hydroxybenzoate decarboxylase was isolated from E. cloacae P240. Nucleotide sequencing of recombinant plasmids revealed that the 4-hydroxybenzoate decarboxylase gene codes for a 475-amino-acid protein. The amino acid sequence of the enzyme is similar to those of 4-hydroxybenzoate decarboxylase of Clostridium hydroxybenzoicum (53% identity), VdcC protein (vanillate decarboxylase) of Streptomyces sp. strain D7 (72%) and 3-octaprenyl-4-hydroxybenzoate decarboxylase of Escherichia coli (28%). The hypothetical proteins, showing 96–97% identities to the primary structure of E. cloacae P240 4-hydroxybenzoate decarboxylase, were found in several bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号