首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Competitive saprophytic colonization of wheat straw   总被引:1,自引:0,他引:1  
Using the ‘Cambridge method’, the effect of temperature on the colonization of wheat straw by Fusarium culmorum, Gibberella zeae, Cochliobolus sativus and C. spicifer was studied. Within the range 10–30 °C, saprophytic colonization by the four fungi was favoured by lower temperatures. This could not be attributed to the effect of temperature on the growth of the fungi in pure culture, but was probably caused by increased antagonism at higher temperatures from the general soil microflora. Contrary to previous indications, C. sativus strongly colonized straw under suitable environmental conditions.  相似文献   

2.
The chemical composition of the essential oil isolated from the aerial parts of Hypericum linarioides Bosse by hydrodistillation was analysed by GC–MS. It was determined that 74 compounds, which represent 84.1% of total oil, were present in the oil. The oil contains mainly δ-cadinene (6.9%), (Z)-β-farnesene (5.2%), γ-muurolene (5.5%), spathulenol (4.8%), hexahydrofarnesyl acetone (4.5%) and α-selinene (4.0%). The oil was also characterized by high content of sesquiterpenes (64.2% of total oil). The oil was tested for antifungal activity using mycelial growth inhibition assays (in vitro) against 11 agricultural pathogenic fungi, which consisted of six Fusarium species (Fusarium acuminatum, Fusarium culmorum, Fusarium equiseti, Fusarium oxysporum, Fusarium sambucinum and Fusarium solani) and three anastomosis groups of Rhizoctonia solani (AG-5, AG-9 and AG-11), Alternaria solani and Verticillium albo-atrum. The oil of H. linarioides showed antifungal activity against AG-9 and V. albo-atrum. In addition, petroleum ether, chloroform, acetone and methanol extracts of H. linarioides were tested against species of 11 fungi. The extracts showed moderate inhibition effects on the growth of A. solani, F. culmorum, F. equiseti and all anastomosis groups of R. solani.  相似文献   

3.
The impact of 10 Fusarium species in concomitant association with Rotylenchulus reniformis on cotton seedling disease was examined under greenhouse conditions. In experiment 1, fungal treatments consisted of Fusarium chlamydosporum, F. equiseti, F. lateritium, F. moniliforme, F. oxysporum, F. oxysporum f.sp. vasinfectum, F. proliferatum, F. semitectum, F. solani, and F. sporotrichioides; Rhizoctonia solani; and Thielaviopsis basicola. The experimental design was a 2 × 14 factorial consisting of the presence or absence of R. reniformis and the 12 fungal treatments plus two controls in autoclaved field soil. In experiment 2, the same fungal and nematode treatments were examined in autoclaved or non-autoclaved soil. This experimental design was a 2 × 2 × 14 factorial consisting of field or autoclaved soil, presence or absence of R. reniformis, and the 12 fungal treatments plus two controls. In both tests, Fusarium oxysporum f. sp. vasinfectum, F. solani, R. solani, and T. basicola consistently displayed extensive root and hypocotyl necrosis that was more severe (P ≤ 0.05) in the presence of R. reniformis. Soil treatment (autoclaved vs. non-autoclaved) influenced the impact of the Fusarium species on cotton seedling disease, with disease being more severe in the autoclaved soil. Rotylenchulus reniformis reproduction on cotton seedlings was greater in field soil compared to autoclaved soil (P ≤ 0.05). This study suggests the importance of Fusarium species and R. reniformis in cotton seedling disease.  相似文献   

4.
Banana fruits were studied over a six-month period in order to determine the incidence of species of the Fusarium genus and assess their potential pathogenicity. The 72 samples studied were commercially available in Italy and Spain, where they were brought from Panama, Ecuador and Canary Islands. Among the species detected in the fruits, Fusarium semitectum var. majus Wollenw. was predominant, followed by F. moniliforme Sheld., F. solani (Mart.) Appel & WoUenw., F. oxysporum Schlecht., F. proliferatum (Matsushima) Nirenberg, F. graminearum Schw., F. camptoceras WoUenw. &C Reinking, F. subglutinans (WoUenw. & Reinking) Nelson et al., F. dimerum Penzig in Sacc, F. acuminatum EU. & Ev., and F. equiseti (Corda) Sacc. Fusarium proliferatum had never been reported to occur as contaminating fungi in banana fruits to date. Fusarium subglutinans, F. acuminatum and F. graminearum were found to be the most markedly pathogenic of all. The lack of noticeable differences in relation to the incidence of the different species isolated from the samples indicates that the mycoflora found is typical of this fruit and does not depend on its origin.  相似文献   

5.
In order to determine the crown and root agents and their mycotoxins produced in different growth stages of wheat including seedling, tillering and heading, sampling was done in north of Iran, during 2011–2012. From 160 isolates of Fusarium, eight species were obtained including F. graminearum, F. culmorum, F. equiseti, F. nygamai, F. semitectum, F. solani, F. acuminatum and F. oxysporum. Sampling at different growth stages showed that F. graminearum was the predominant causal agent of crown and root at the heading stage, whereas other species of Fusarium were mostly observed at the seedling and tillering stages. Moreover, identification of pathogenic species was confirmed using species-specific primers pairs. In F. graminearum isolates, presence of Tri13 gene, responsible for nivalenol (NIV) and deoxynivalenol (DON) mycotoxins biosynthesis, was detected using specific PCR primers. Finally, the ability of trichothecene production of five F. graminearum isolates was confirmed with high-performance liquid chromatography.  相似文献   

6.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

7.
Eighty‐eight fungi isolated from soil and decaying organic matter were screened for mannanolytic activity. Twenty‐eight fungi produced extracellular mannanase on locust bean gum as evidenced by zone of hydrolysis produced on mannan agar gel. Six prominent producers, including four Fusarium species namely Fusarium fusarioides NFCCI 3282, Fusarium solani NFCCI 3283, Fusarium equiseti NFCCI 3284, Fusarium moniliforme NFCCI 3287 with Cladosporium cladosporioides NFCCI 3285 and Acrophialophora levis NFCCI 3286 produced the β‐mannanase in the range of 84–140 nkat/mL. All these grew well on particulate substrates in solid‐state fermentation (SSF), producing relatively higher titers on mannan‐rich palm kernel cake (PKC) and copra meal. Two high yielding strains, F. equiseti (1747 nkat/gds) and A. levis (897 nkat/gds) were selected for statistical optimization of mannanase on PKC. Interaction of two critical solid state fermentation parameters, pH and moisture on mannanase production by these two molds was studied by response surface method. Optimized production on PKC resulted in three‐ to fourfold enhancement in enzyme yield was observed in case of F. equiseti (5945 nkat/gds) and A. levis (4726 nkat/gds). HPLC analysis of mannan hydrolysate indicated that F. equiseti and A. levis mannanase performed efficient hydrolysis of konjac gum (up to 99%) with exclusive mannooligosaccahride (DP of 4) production. A seminative SDS‐PAGE revealed that A. levis and F. solani produced three isoforms, F. moniliforme produced two isoforms while F. fusarioides, F. equiseti, and C. cladosporioides produced a single enzyme.  相似文献   

8.
Criconemella xenoplax, Fusarium solani, and F. oxysporum caused necrosis of Nemaguard peach feeder roots in greenhouse tests. Root necrosis was more extensive in the presence of either fungus than wtih C. xenoplax alone. Shoot growth and plant height were less for plants inoculated with F. oxysporum or F. solani than for plants inoculated with the fungi plus C. xenoplax. Neither synergistic nor additive effects on root necrosis or plant growth occurred between C. xenoplax and the fungal pathogens.  相似文献   

9.
A. Z. Joffe 《Plant and Soil》1973,38(2):439-446
Summary A total of 17 species and varieties of Fusarium have been isolated from groundnut kernels, rhizosphere and geocarposhere and from the soil of groundnut fields in Israel.F.solani predominated in the Fusarium flora of soil, rhizosphere and fresh kernels, and in particular on stored kernels. In the geocarposhere,F. solani, F. oxysporum andF. equiseti occurred in fairly equal amounts. Fusaria made up 16.2 to 32.6 per cent of the total mycoflora of kernels, soil, rhizosphere and geocarposphere.In tests with 14 isolates from groundnuts, production of toxins inducing visible reactions on rabbit skin was strongest when cultures were kept at 24 to 30°C. Only one isolate failed to produce a toxic reaction.The mortality of seedlings induced in inoculation tests with 23 groundnut isolates ofF. oxysporum, F. solani andF. equiseti was severe (mostly averaging 20 to 40%) in tomato and eggplant, moderate (mostly 10 to 20%) in bean, cucumber, watermelon and onion, weaker in cotton and pepper, and least in maize and wheat.  相似文献   

10.
为挖掘木贼镰孢(Fusarium equiseti (Corda) Sacc.)的产毒基因及明确其进化关系,通过BLAST软件与GO、KEGG、COG、E职NOG、CAZy等14个数据库结合的方法对其全基因组进行功能注释并挖掘产毒基因,进行系统进化分析及运用色谱技术研究产毒基因的分泌规律;以麦根腐平脐蠕孢、燕麦镰孢、尖...  相似文献   

11.
Weeds are alternative hosts of plant pathogens and when colonized may not exhibit disease symptoms. In 2008 and 2009, samples of weeds and plant debris were collected from 12 locations in eastern Croatia, and 300 Fusarium isolates colonizing them were identified. Strains were grouped and identified based on morphology and amplified fragment length polymorphism (AFLP) patterns. Portions of the β‐tubulin and translocation elongation factor 1‐α genes were sequenced from representative strains of each group to confirm the identifications. Fourteen Fusarium species were identified with F. graminearum (20%), F. verticillioides (18%), F. oxysporum (16%), F. subglutinans (13%) and F. proliferatum (11%) all present as more than 10% of the population. Fusarium acuminatum, F. avenaceum, F. concolor, F. crookwellense (F. cerealis), F. equiseti, F. semitectum, F. solani, F. sporotrichioides and F. venenatum, were all present at frequencies < 8%. Our results indicate that economically important Fusarium spp. may be isolated from numerous alternative hosts during the off season and that weeds and plant debris can serve as a reservoir of genetically diverse inoculum.  相似文献   

12.
The phytopathogenic fungi Colletotrichum circinans, Fusarium solani, and Rhizoctonia solani were incubated in aerated (0, 0.5, 1 dm3 min–1) potato dextrose broth (PDB) or Czapek-Dox broth (CDB), under 0-, 12- or 24-h photoperiods. Greater dry mass was produced in PDB. Higher air flows improved dry mass of F. solani and R. solani. The 24-h photoperiod improved F. solani dry mass. Except for F. solani, which was not affected, incubation in PDB increased protein content. The no air treatment increased protein content in F. solani, 0.5 dm3 min–1 produced the highest protein content in R. solani, but air flow-rate did not affect C. circinans. Incubation in the dark produced the lowest protein content in C. circinans, the highest under the 24-h photoperiod for R. solani, and photoperiod did not affect protein content in F. solani. Protein content in R. solani, incubated in CDB, was lowest at the 0 dm3 min–1 air flow at all photoperiods. Molecular masses of most proteins were under 30 kDa, and numbers of bands in SDS-PAGE gels varied with air flow. In CDB, especially under 12- or 24-h photoperiods, proteins in F. solani were between 1.6 and 310 kDa. For R. solani in PDB, at 0.5 dm3 min–1 air flow and 12-h light, proteins were between 6 and 81 kDa.  相似文献   

13.
Production of bikaverin has been examined in 130Fusarium isolates belonging to 21 species. The highest yield of bikaverin was produced on autoclaved rice — up to 2.5g/kg of dry culture. Bikaverin was produced by the following species:F verticillioides, F sacchari varsubglutinans, F proliferatum, F anthophilum, F oxysporum, F dlamini, F nygamai, F napiforme, andF solani. SpeciesF coeruleum, F poae, F sporotrichioides, F tricinctum, F chlamydosporum, F culmorum, F graminearum, F cerealis (F crookwellense), F avenaceum, F acuminatum, andF equiseti did not produce bikaverin. The production of bikaverin determines the colour of the mentionedFusarium species cultures on agar media and on rice. The pigment has indicator properties and changes colour from red in acidic solution to violet-blue in alkaline. The role it plays in fungus metabolism is not elucidated.  相似文献   

14.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   

15.
Summary Plant survival rate, root disease index and fresh shoot weight of subterranean clover seedlings inoculated with fungal pathogens (Fusarium avenaceum, F. oxysporum, Phoma medicaginis, Pythium irregulare andRhizoctonia solani, both singly and in combinations) were generally inter-correlated over a wide range of temperature (10, 15, 20 and 25°C) and moisture conditions (45, 65% water holding capacity and flooding). There was a negative correlation between root disease index and shoot weight for all treatments exceptF. avenaceum + P. irregulare. Root disease index and seedling survival rate were negatively correlated except forF. oxygsporum, Phoma medicaginis, P. irregulare andF. oxysporum + F. avenaceum. However, a good positive correlation was found between the survival rate and shoot weight for all treatments with the exception ofPhoma medicaginis.  相似文献   

16.
To alleviate the environmental contamination due to persistent chemical usage, approaches to integrated pest management were conceived. In this perspective, microbe–microbe interactions such as mycorrhizal relationships with other soil microbiota in the rhizosphere like the plant growth‐promoting fungi (PGPF) are particularly important. Better understanding of the interactions between beneficial microbial groups is imperative in the identification of possible synergistic or antagonistic effects to improve their practical usage as biocontrol agents or biofertilizers. In this study, the consequence of co‐inoculation of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae (Gm) and the PGPF Fusarium equiseti (isolates GF18‐3 and GF19‐1) in terms of plant growth enhancement, root and rhizosphere colonisation, and development of anthracnose (Colletotrichum orbiculare) and damping‐off (Rhizoctonia solani AG‐4) diseases in cucumber plants was investigated under controlled conditions. The amendment of either GF18‐3 or GF19‐1 singly or in combination with Gm indicated a general tendency to significantly enhance the shoot dry weight (SDW) of cucumber plants at 4 weeks after planting (WAP). Similarly, Gm alone significantly enhanced SDW at 4 WAP. Gm showed a tendency to depress root colonisation by F. equiseti but such antagonistic effect was not observed in the rhizosphere soil. Both GF18‐3 and GF19‐1 significantly reduced percent root colonisation of Gm. However, these general tendencies may vary with the inoculum densities of AMF and PGPF. Both F. equiseti and Gm inoculated singly significantly increased percent of protection against anthracnose, but the combined inoculation was more effective in controlling the disease compared to single inoculation. The inoculation of the cucumber seedlings with GF18‐3, GF19‐1 or Gm, 6 or 12 days prior to damping‐off pathogen inoculation, increased percent of protection against damping‐off disease. This study shows that the co‐inoculation of F. equiseti and Gm resulted in additive effect on the suppression of anthracnose disease in cucumber.  相似文献   

17.
The effects of the blue form of Fusarium solani, the causal agent of sudden death syndrome (SDS), on Heterodera glycines were examined in the greenhouse. Roots of soybean cv. Coker 156 were inoculated with either H. glycines alone or F. solani + H. glycines in combination. Population levels of H. glycines were reduced 47% in the presence of F. solani. Life-stage development of H. glycines increased 3% in 30 days in the presence of F. solani. Fusarium solani colonized epidermal and cortical cells adjacent to developing juveniles of H. glycines and the nematode-induced syncytia within the soybean root tissue. At 40 days after inoculation, F. solani was isolated from 37% of the cysts in soil recovered from the F. solani + H. glycines combination treatment. Fusarium solani significantly affected H. glycines population density, life-stage development, and succeeding populations.  相似文献   

18.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

19.
In this study, pyruvate production of Fusarium equiseti was significantly increased when the yeast extract concentration was raised from 5 to 25 g/L while it was increased to only up to 10 g/L yeast extract in F. acuminatum. Upon supplementation with urea as an alternative nitrogen source, production of pyruvate for both of the Fusarium species were decreased with respect to increase in urea concentration in medium. On the other hand, ethanol production and alcohol dehydrogenase activity of F. equiseti were decreased approximately 1.9- and 1.6-fold with an increase in yeast concentration from 5 to 25 whereas the levels of F. acuminatum were increased 2.3- and 1.8-fold, respectively. In addition, ethanol productions and ADH activities in F. equiseti and F. acuminatum significantly increased on the 12th day up to 15 and 25 g/L urea concentrations, respectively. However, they were significantly decreased under these conditions at higher nitrogen sources. In addition, ethanol production and alcohol dehydrogenase activity in urea supplemented medium were higher than yeast extract supplemented. The results may suggest that the pyruvate, ethanol production and ADH enzyme activity variations and balance between aerobic and anaerobic respiration in F. equiseti and F. acuminatum were effected from yeast extract and urea concentrations in the nutrient medium.  相似文献   

20.
Three isolates ofFusarium avenaceum are pathogenic on spotted knapweed(Centaurea maculosa), a major weed plant of pasturelands and rangelands of the Pacific Northwestern USA. One isolate (no. 1) obtained from the European centre of origin of knapweed and isolate no. 365 native to Montana, did not significantly affect knapweed seed germination. However,F. avenaceum no. 1003, another Montana native isolate, caused a 100% decrease in seed germination and hence, no seedling emergence. When formulated, isolate no. 1003, could be recovered from treated soils after 7 days and caused a significant reduction in seedling emergence or seedling dry weight. This organism had no effect on the germination ofTriticum aestivum orMedicago sativa, but did affect the germination of other plant species.F. avenaceum appears to be a candidate for the biocontrol of spotted knapweed, however, a native isolate is potentially more effective than an isolate obtained from the centre of origin ofC. maculosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号