首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast plasma-membrane H(+)-ATPase, encoded by PMA1, is delivered to the cell surface via the secretory pathway and has recently emerged as an excellent system for identifying quality control mechanisms along the pathway. In the present study, we have tracked the biogenesis of Pma1-G381A, a misfolded mutant form of the H(+)-ATPase. Although this mutant ATPase is arrested transiently in the peripheral endoplasmic reticulum, it does not become a substrate for endoplasmic reticulum-associated degradation nor does it appear to stimulate an unfolded protein response. Instead, Pma1-G381A accumulates in Kar2p-containing vesicular-tubular clusters that resemble those previously described in mammalian cells. Like their mammalian counterparts, the yeast vesicular-tubular clusters may correspond to specific exit ports from the endoplasmic reticulum, since Pma1-G381A eventually escapes from them (still in a misfolded, trypsin-sensitive form) to reach the plasma membrane. By comparison with wild-type ATPase, Pma1-G381A spends a short half-life at the plasma membrane before being removed and sent to the vacuole for degradation in a process that requires both End4p and Pep4p. Finally, in a separate set of experiments, Pma1-G381A was found to impose its phenotype on co-expressed wild-type ATPase, transiently retarding the wild-type protein in the ER and later stimulating its degradation in the vacuole. Both effects serve to lower the steady-state amount of wild-type ATPase in the plasma membrane and, thus, can explain the co-dominant genetic behavior of the G381A mutation. Taken together, the results of this study establish Pma1-G381A as a useful new probe for the yeast secretory system.  相似文献   

2.
Yeast mutants lacking the intracellular V-ATPase proton pump (vma mutants) have reduced levels of the Pma1p proton pump at the plasma membrane and increased levels in organelles including the vacuolar lumen. We examined the mechanism and physiological consequences of Pma1p mislocalization. Pma1p is ubiquitinated in vma mutants, and ubiquitination depends on the ubiquitin ligase Rsp5p and the arrestin-related adaptor protein Rim8p. vma mutant strains containing rsp5 or rim8 mutations maintain Pma1p at the plasma membrane, suggesting that ubiquitination is required for Pma1p internalization. Acute inhibition of V-ATPase activity with concanamycin A triggers Pma1p ubiquitination and internalization. In an endocytosis-deficient mutant (end4Δ) Pma1p is ubiquitinated but retained at the plasma membrane during concanamycin A treatment. Consistent with specificity in signaling loss of V-ATPase activity to Pma1p, another plasma membrane transporter, Mup1p, is not internalized in a vma mutant, and loss of the Mup1p adaptor Art1p does not prevent Pma1p internalization in a vma mutant. Very poor growth of vma2 rsp5-1 and vma2 rim8Δ double mutants suggests that Pma1p internalization benefits the vma mutants. We hypothesize that loss of V-ATPase-mediated organelle acidification signals ubiquitination, internalization, and degradation of a portion of Pma1p as a means of balancing overall pH homeostasis.  相似文献   

3.
The yeast plasma membrane H(+)-ATPase Pma1p is one of the most abundant proteins to traverse the secretory pathway. Newly synthesized Pma1p exits the endoplasmic reticulum (ER) via COPII-coated vesicles bound for the Golgi. Unlike most secreted proteins, efficient incorporation of Pma1p into COPII vesicles requires the Sec24p homolog Lst1p, suggesting a unique role for Lst1p in ER export. Vesicles formed with mixed Sec24p-Lst1p coats are larger than those with Sec24p alone. Here, we examined the relationship between Pma1p biosynthesis and the requirement for this novel coat subunit. We show that Pma1p forms a large oligomeric complex of >1 MDa in the ER, which is packaged into COPII vesicles. Furthermore, oligomerization of Pma1p is linked to membrane lipid composition; Pma1p is rendered monomeric in cells depleted of ceramide, suggesting that association with lipid rafts may influence oligomerization. Surprisingly, monomeric Pma1p present in ceramide-deficient membranes can be exported from the ER in COPII vesicles in a reaction that is stimulated by Lst1p. We suggest that Lst1p directly conveys Pma1p into a COPII vesicle and that the larger size of mixed Sec24pLst1p COPII vesicles is not essential to the packaging of large oligomeric complexes.  相似文献   

4.
Many heterologous membrane proteins expressed in the yeast Saccharomyces cerevisiae fail to reach their normal cellular location and instead accumulate in stacked internal membranes. Arabidopsis thaliana plasma membrane H(+)-ATPase isoform 2 (AHA2) is expressed predominantly in yeast internal membranes and fails to complement a yeast strain devoid of its endogenous H(+)-ATPase Pma1. We observed that phosphorylation of AHA2 in the heterologous host and subsequent binding of 14-3-3 protein is crucial for the ability of AHA2 to substitute for Pma1. Thus, mutants of AHA2, complementing pma1, showed increased phosphorylation at the penultimate residue (Thr(947)), which creates a binding site for endogenous 14-3-3 protein. Only a pool of ATPase in the plasma membrane is phosphorylated. Double mutants carrying in addition a T947A substitution lost their ability to complement pma1. However, mutants affected in both autoinhibitory regions of the C-terminal regulatory domain complemented pma1 irrespective of their ability to become phosphorylated at Thr(947). This demonstrates that it is the activity status of the mutant enzyme and neither redirection of trafficking nor 14-3-3 binding per se that determines the ability of H(+)-pumps to rescue pma1.  相似文献   

5.
Null mutations in genes encoding V-ATPase subunits in Saccharomyces cerevisiae result in a phenotype that is unable to grow at high pH and is sensitive to high and low metal-ion concentrations. Treatment of these null mutants with ethylmethanesulfonate causes mutations that suppress the V-ATPase null phenotype, and the mutant cells are able to grow at pH 7.5. The suppressor mutants were denoted as svf (suppressor of V-ATPase function). The frequency of svf is relatively high, suggesting a large target containing several genes for the ethylmethanesulfonate mutagenesis. The suppressors' frequency is dependent on the individual genes that were inactivated to manifest the V-ATPase null mutation. The svf mutations are recessive, because crossing the svf mutants with their corresponding V-ATPase null mutants resulted in diploid strains that are unable to grow at pH 7.5. A novel gene family in which null mutations cause pleiotropic effects on metal-ion resistance or sensitivity and distribution of membrane proteins in different targets was discovered. The family was defined as VTC (Vacuolar Transporter Chaperon) and it contains four genes in the S. cerevisiae genome. Inactivation of one of them, VTC1, in the background of V-ATPase null mutations resulted in svf phenotype manifested by growth at pH 7.5. Deletion of the VTC1 gene (DeltaVTC1) results in a reduced amount of V-ATPase in the vacuolar membrane. These mutant cells fail to accumulate quinacrine into their vacuoles, but they are able to grow at pH 7.5. The VTC1 null mutant also results in a reduced amount of the plasma membrane H(+)-ATPase (Pma1p) in membrane preparations and possibly mis-targeting. This observation may provide an explanation for the svf phenotype in the double disruptant mutants of DeltaVTC1 and DeltaVMA subunits.  相似文献   

6.
Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.  相似文献   

7.
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a selenium-containing antioxidant demonstrating anti-inflammatory and cytoprotective properties in mammalian cells and cytotoxicity in lower organisms. The mechanism underlying the antimicrobial activity of ebselen remains unclear. It has recently been proposed that, in lower organisms like yeast, the plasma membrane H+-ATPase (Pma1p) could serve as a potential target for this synthetic organoselenium compound. Using yeast and bacteria, the present study found ebselen to inhibit microbial growth in a concentration- and time-dependent manner, and yeast and Gram-positive bacteria to be more sensitive to this action (IC50 approximately 2-5 microM) than Gram-negative bacteria (IC50 < 80 microM). Washout experiments and scanning electron microscopic analysis revealed ebselen to possess fungicidal activity. In addition, ebselen was found to inhibit medium acidification by PMA1-proficient haploid yeast in a concentration-dependent manner. Additional studies comparing PMA1 (+/-) and PMA1 (+/+) diploid yeast cells revealed the mutant to be more sensitive to treatment with ebselen than the wild type. Ebselen also inhibited the ATPase activity of Pma1p from S. cerevisiae in a concentration-dependent manner. The interaction of ebselen with the sulfhydryl-containing compounds L-cysteine and reduced glutathione resulted in the complete and partial prevention, respectively, of the inhibition of Pma1p ATPase activity by ebselen. Taken together, these results suggest that the fungicidal action of ebselen is due, at least in part, to interference with both the proton-translocating function and the ATPase activity of the plasma membrane H+-ATPase.  相似文献   

8.
CD39-like ectoapyrases are involved in protein and lipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. By using a two-hybrid screen, we found that an activator subunit (Vma13p) of yeast vacuolar H(+)-ATPase (V-ATPase) binds to the cytoplasmic domain of Ynd1p, a yeast ectoapyrase. Interaction of Ynd1p with Vma13p was demonstrated by direct binding and co-immunoprecipitation. Surprisingly, the membrane-bound ADPase activity of Ynd1p in a vma13Delta mutant was drastically increased compared with that of Ynd1p in VMA13 cells. A similar increase in the apyrase activity of Ynd1p was found in a vma1Delta mutant, in which the catalytic subunit A of V-ATPase is missing, and the membrane peripheral subunits including Vma13p are dissociated from the membranes. However, the E286Q mutant of VMA1, which assembles inactive V-ATPase complex including Vma13p in the membrane, retained wild type levels of Ynd1p activity, demonstrating that the presence of Vma13p rather than the function of V-ATPase in the membrane represses Ynd1p activity. These results suggest that association of Vma13p with the cytoplasmic domain of Ynd1p regulates its apyrase activity in the Golgi lumen.  相似文献   

9.
Vacuolar proton-translocating ATPases (V-ATPases) play a central role in organelle acidification in all eukaryotic cells. To address the role of the yeast V-ATPase in vacuolar and cytosolic pH homeostasis, ratiometric pH-sensitive fluorophores specific for the vacuole or cytosol were introduced into wild-type cells and vma mutants, which lack V-ATPase subunits. Transiently glucose-deprived wild-type cells respond to glucose addition with vacuolar acidification and cytosolic alkalinization, and subsequent addition of K(+) ion increases the pH of both the vacuole and cytosol. In contrast, glucose addition results in an increase in vacuolar pH in both vma mutants and wild-type cells treated with the V-ATPase inhibitor concanamycin A. Cytosolic pH homeostasis is also significantly perturbed in the vma mutants. Even at extracellular pH 5, conditions optimal for their growth, cytosolic pH was much lower, and response to glucose was smaller in the mutants. In plasma membrane fractions from the vma mutants, activity of the plasma membrane proton pump, Pma1p, was 65-75% lower than in fractions from wild-type cells. Immunofluorescence microscopy confirmed decreased levels of plasma membrane Pma1p and increased Pma1p at the vacuole and other compartments in the mutants. Pma1p was not mislocalized in concanamycin-treated cells, but a significant reduction in cytosolic pH under all conditions was still observed. We propose that short-term, V-ATPase activity is essential for both vacuolar acidification in response to glucose metabolism and for efficient cytosolic pH homeostasis, and long-term, V-ATPases are important for stable localization of Pma1p at the plasma membrane.  相似文献   

10.
The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.  相似文献   

11.
Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.  相似文献   

12.
The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1 (YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H(+)-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters).  相似文献   

13.
Saccharomyces cerevisiae Gup1p is a membrane-bound O-acyltransferase. Previous works involved GUP1 in a wide range of crucial processes for cell preservation and functioning. These include cytoskeleton polarization and secretory/endocytic pathway, GPI-anchor remodelling, wall composition and integrity, and membrane lipids, with a reduction in phospholipids and an increase in acylglycerols. DRM fractions were found in considerably lower amounts in gup1Delta than in wt strain. Additionally, the proteins presumably associated with lipid micro domains, Gas1p and Pma1p, were present in much smaller amounts in the mutant DRMs. Pma1p is also found in minor quantities in the whole cells extracts of the gup1Delta mutant. Accordingly, H(+)-ATPase activity was reduced in about 40%. Deletion of GUP1 resulted in higher sensibility to specific sphingolipid biosynthesis inhibitors and a notorious resistance to ergosterol biosynthesis inhibitors. Furthermore, the majority of mutant cells displayed an even (less punctuated) sterol distribution. The present work presents improvements to DRMs extraction methodology and filipin-sterol staining, provides evidence supporting that Gup1p is involved in lipid metabolism and shows the direct consequences of its absence on the plasma membrane sphingolipid-sterol-ordered domains integrity/assembly.  相似文献   

14.
15.
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPase has a structure and mechanism of action similar to F-ATPase and several of their subunits probably evolved from common ancestors. In eukaryotic cells, F-ATPase is confined to the semiautonomous organelles, chloroplasts and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the protonmotive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. It was the survival of the yeast mutant without the active enzyme and yeast genetics that allowed the identification of genuine subunits of the V-ATPase. It also revealed special properties of individual subunits, factors that are involved in the enzyme's biogenesis and assembly, as well as the involvement of V-ATPase in the secretory pathway, endocytosis, and respiration. It may be the insect V-ATPase that unconventionally resides in the plasma membrane of their midgut, that will give the first structure resolution of this complex.  相似文献   

16.
Addition of glucose-related fermentable sugars or protonophores to derepressed cells of the yeast Saccharomyces cerevisiae causes a 3- to 4-fold activation of the plasma membrane H(+)-ATPase within a few minutes. These conditions are known to cause rapid increases in the cAMP level. In yeast strains carrying temperature-sensitive mutations in genes required for cAMP synthesis, incubation at the restrictive temperature reduced the extent of H(+)-ATPase activation. Incubation of non-temperature-sensitive strains, however, at such temperatures also caused reduction of H(+)-ATPase activation. Yeast strains which are specifically deficient in the glucose-induced cAMP increase (and not in basal cAMP synthesis) still showed plasma membrane H(+)-ATPase activation. Yeast mutants with widely divergent activity levels of cAMP-dependent protein kinase displayed very similar levels of activation of the plasma membrane H(+)-ATPase. This was also true for a yeast mutant carrying a deletion in the CDC25 gene. These results show that the cAMP-protein kinase A signaling pathway is not required for glucose activation of the H(+)-ATPase. They also contradict the specific requirement of the CDC25 gene product. Experiments with yeast strains carrying point or deletion mutations in the genes coding for the sugar phosphorylating enzymes hexokinase PI and PII and glucokinase showed that activation of the H(+)-ATPase with glucose or fructose was completely dependent on the presence of a kinase able to phosphorylate the sugar. These and other data concerning the role of initial sugar metabolism in triggering activation are consistent with the idea that the glucose-induced activation pathways of cAMP-synthesis and H(+)-ATPase have a common initiation point.  相似文献   

17.
In yeast cells, subunit a of the vacuolar proton pump (V-ATPase) is encoded by two organelle-specific isoforms, VPH1 and STV1. V-ATPases containing Vph1 and Stv1 localize predominantly to the vacuole and the Golgi apparatus/endosomes, respectively. Ratiometric measurements of vacuolar pH confirm that loss of STV1 has little effect on vacuolar pH. Loss of VPH1 results in vacuolar alkalinization that is even more rapid and pronounced than in vma mutants, which lack all V-ATPase activity. Cytosolic pH responses to glucose addition in the vph1Δ mutant are similar to those in vma mutants. The extended cytosolic acidification in these mutants arises from reduced activity of the plasma membrane proton pump, Pma1p. Pma1p is mislocalized in vma mutants but remains at the plasma membrane in both vph1Δ and stv1Δ mutants, suggesting multiple mechanisms for limiting Pma1 activity when organelle acidification is compromised. pH measurements in early prevacuolar compartments via a pHluorin fusion to the Golgi protein Gef1 demonstrate that pH responses of these compartments parallel cytosolic pH changes. Surprisingly, these compartments remain acidic even in the absence of V-ATPase function, possibly as a result of cytosolic acidification. These results emphasize that loss of a single subunit isoform may have effects far beyond the organelle where it resides.  相似文献   

18.
The proton pumping H(+)-ATPase, Pma1p, is an abundant and very long-lived polytopic protein of the Saccharomyces cerevisiae plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as an excellent model to study plasma membrane biogenesis. We have previously shown that newly synthesized Pma1p is mistargeted to the vacuole in an elo3Delta mutant that affects the synthesis of the ceramide-bound C26 very long chain fatty acid (Eisenkolb, M., Zenzmaier, C., Leitner, E., and Schneiter, R. (2002) Mol. Biol. Cell 13, 4414-4428) and now describe a more detailed analysis of the role of lipids in Pma1p biogenesis. Remarkably, a block at various steps of sterol biosynthesis, a complete block in sterol synthesis, or the substitution of internally synthesized ergosterol by externally supplied ergosterol or even by cholesterol does not affect Pma1p biogenesis or its association with detergent-resistant membrane domains (lipid "rafts"). However, a block in sphingolipid synthesis or any perturbation in the synthesis of the ceramide-bound C26 very long chain fatty acid results in mistargeting of newly synthesized Pma1p to the vacuole. Mistargeting correlates with a lack of newly synthesized Pma1p to acquire detergent resistance, suggesting that sphingolipids with very long acyl chains affect sorting of Pma1p to the cell surface.  相似文献   

19.
The vacuolar H(+)-ATPase (V-ATPase) is a universal component of eukaryotic organisms, which is present in both intracellular compartments and the plasma membrane. In the latter, its proton-pumping action creates the low intravacuolar pH, benefiting many processes such as, membrane trafficking, protein degradation, renal acidification, bone resorption, and tumor metastasis. In this article, we briefly summarize recent studies on the essential and diverse roles of mammalian V-ATPase and their medical applications, with a special emphasis on identification and use of V-ATPase inhibitors.  相似文献   

20.
The plasma membrane proton pump (H(+)-ATPase) energizes solute uptake by secondary transporters. Wild-type Arabidopsis plasma membrane H(+)-ATPase (AHA2) and truncated H(+)-ATPase lacking 38, 51, 61, 66, 77, 92, 96, and 104 C-terminal amino acids were produced in yeast. All AHA2 species were correctly targeted to the yeast plasma membrane and, in addition, accumulated in internal membranes. Removal of 38 C-terminal residues from AHA2 produced a high-affinity state of plant H(+)-ATPase with a low Km value (0.1 mM) for ATP. Removal of an additional 12 amino acids from the C terminus resulted in a significant increase in molecular activity of the enzyme. There was a close correlation between molecular activity of the various plant H(+)-ATPase species and their ability to complement mutants of the endogenous yeast plasma membrane H(+)-ATPase (pma1). This correlation demonstrates that, at least in this heterologous host, activation of H(+)-ATPase is a prerequisite for proper energization of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号