首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tobacco (cv. Xanthi and cv. Wisconsin 38), rice, carrot, tomato, and soybean tissue cultures were grown in liquid media containing L-tryptophan. The addition of tryptophan increased the cellular tryptophan levels greatly (12–2500 fold), but did not lower appreciably the levels of two tryptophan biosynthetic enzymes, anthranilate synthetase and tryptophan synthetase. However, the addition of 50 μM tryptophan to the crude enzyme extract completely inhibited the anthranilate synthetase activity while 1 mM tryptophan inhibited the tryptophan synthetase activity by only 10–20°/o. This information indicates that tryptophan biosynthesis is controlled by the feedback inhibition of anthranilate synthetase by tryptophan and not by repression of enzyme synthesis. All of the species had significant enzyme levels. Anthranilate synthetase activity could not be detected in extracts from cells grown on tryptophan unless the extracts were first passed through two G-25 Sephadex columns with a short 30 °C warming step in between, a procedure shown to remove an inhibitor of the enzyme.  相似文献   

2.
Shikimate, anthranilate, indole, l -tryptophan, phenylpyruvate, l -p henylalanine, p-hydroxyphenylpyruvate or l -tyrosine were added to suspension-cultured Nicotiana tabacum (tabacco) and Daucus carota (carrot) tissues and incubated for 24 hours. Uptake of each compound was substantial as measured by its decrease in the medium. The levels of free tryptophan, phenylalanine and tyrosine were determined in the tissues after the 24 hours incubation. Shikimate did not change the aromatic animo acid levels in carrot tissue, but did increase all three in tobacco (3-fold or more), indicating a less stringent feedback control in tobacco. Anthranilate and indole increased the tissue tryptophan levels in both species by at least 17-fold, showing that the flow from anthranilate and indole to tryptophan was apparently unhindered by enzymatic control mechanisms. When tryptophan levels were elevated in both carrot and tobaccotissues by anthranilate, indole or tryptophan addition, there was also an increase in free phyenylalanine and tyrosine. This might be due to the reversal of phenylalanine and tyrosine feedback inhibition of chorismate mutase by the high tryptophan in the tissue. Chorismate mutase activity in tobacco crude extracts could be inhibited by 66–90% by 1 mM phenylalanine and /or tyrosine. Tryptophan at 1 mM stimulated the enzyme activity by 1/3 and completely reversed the phenylalanine and/or tyrosine inhibition of enzyme activity. Chorsimate mutase activity amino acids under a variety of conditions. Phenylpyruvate increased the phenylalanine levels and p-hydroxyphenylpyruvate increased the tyrosine levels in carrot and tobacco tissues indicating that there was no feedback control of the last step in phenylalanine and tyrosine biosynthesis.  相似文献   

3.
Conditions are described for measuring anthranilate synthetase, anthranilate-PRPP-phosphoribosyl transferase, N-5′-phosphoribosyl anthranilate isomerase, indole-3-glycerol phosphate synthetase and tryptophan synthetase in crude extracts from Triticum aestivum (wheat) plants. Only the last enzyme has been measured before in extracts from green plants. The extractable quantities of each enzyme in all plant parts at all stages of growth were sufficient to synthesize the amount of tryptophan present within the same tissue in 48 h. Anthranilate synthetase activity was the lowest of the five enzyme activities and was the only one inhibited by tryptophan in vitro, indicating that this enzyme may be the control point in tryptophan biosynthesis in wheat plants.  相似文献   

4.
Forty single gene mutations in Chlamydomonas reinhardtii were isolated based on resistance to the compound 5'-methyl anthranilic acid (5-MAA). In other organisms, 5-MAA is converted to 5'-methyltryptophan (5-MT) and 5-MT is a potent inhibitor of anthranilate synthase, which catalyzes the first committed step in tryptophan biosynthesis. The mutant strains fall into two phenotypic classes based on the rate of cell division in the absence of 5-MAA. Strains with class I mutations divide more slowly than wild-type cells. These 17 mutations map to seven loci, which are designated MAA1 to MAA7. Strains with class II mutations have generation times indistinguishable from wild-type cells, and 7 of these 23 mutations map to loci defined by class I mutations. The remainder of the class II mutations map to 9 other loci, which are designated MAA8-MAA16. The maa5-1 mutant strain excretes high levels of anthranilate and phenylalanine into the medium. In this strain, four enzymatic activities in the tryptophan biosynthetic pathway are increased at least twofold. These include the combined activities of anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, indoleglycerol phosphate synthetase and anthranilate synthase. The slow growth phenotypes of strains with class I mutations are not rescued by the addition of tryptophan, but the slow growth phenotype of the maa6-1 mutant strain is partially rescued by the addition of indole. The maa6-1 mutant strain excretes a fluorescent compound into the medium, and cell extracts have no combined anthranilate phosphoribosyl transferase, phosphoribosyl anthranilate isomerase and indoleglycerol phosphate synthetase activity. The MAA6 locus is likely to encode a tryptophan biosynthetic enzyme. None of the other class I mutations affected these enzyme activities. Based on the phenotypes of double mutant strains, epistatic relationships among the class I mutations have been determined.  相似文献   

5.
3-Deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase and anthranilate synthetase are key regulatory enzymes in the aromatic amino acid biosynthetic pathway. The DAHP synthetase activity of Hansenula polymorpha was subject to additive feedback inhibition by phenylalanine and tyrosine but not by tryptophan. The synthesis of DAHP synthetase in this yeast was not repressed by exogenous aromatic amino acids, singly or in combinations. The activity of anthranilate synthetase was sensitive to feedback inhibition by tryptophan, but exogenous tryptophan did not repress the synthesis of this enzyme. Nevertheless, internal repression of anthranilate synthetase probably exists, since the content of this enzyme in H. polymorpha strain 3-136 was double that in the wild-type and less sensitive 5-fluorotryptophan-resistant strains. The biochemical mechanism for the overproduction of indoles by the 5-fluorotryptophan-resistant mutants was due primarily to a partial desensitization of the anthranilate synthetase of these strains to feedback inhibition by tryptophan. These results support the concept that inhibition of enzyme activities rather than enzyme repression is more important in the regulation of aromatic amino acid biosynthesis in H. polymorpha.  相似文献   

6.
Tryptophan enhanced the growth of Ochromonas malhamensis at concentrations up to 0.4 mg/ml; higher concentrations inhibited, the growth inhibition being reversible by tyrosine and adenine. The presence of a tryptophan synthetase system in vitro was demonstrated. Tyrosine and phenylalanine stimulated the activity of this enzyme. The uptake of exogenous tryptophan was accompanied by an increase in the free tryptophan pool which in turn suppressed the tryptophan synthetase system, thus pointing to a controlled mechanism. Incorporation of tryptophan in the growth medium enhanced the biosynthesis of folate-active compounds. An elucidation of the mode of action of tryptophan is attempted on the basis of known metabolic pathways.  相似文献   

7.
Glutamine-dependent anthranilate synthetase was produced in vitro by mixing the extracts of a trypA and a trypC mutant of Aspergillus nidulans. Neither mutant alone possessed this activity. The enzyme formed in the mixture had the properties of the wild-type anthranilate synthetase which, together with N-(5-phosphoribosyl) anthranilate (PRA) isomerase and indole 3-glycerol phosphate (InGP) synthetase, is found in a 10S multienzyme complex. Extracts of the trypA69 mutant contained a 6.5S protein as the active component—presumably the trypC + product—which in addition showed PRA isomerase and InGP synthetase activity. Extracts of the trypC801 mutant lacked all three enzyme activities but contained a 4.5S component—the trypA + gene product—which in vitro showed ammonia-dependent anthranilate synthetase activity. These mutants are analogous in their properties to certain tryp-2 and tryp-1 mutants of Neurospora. When complementary extracts of the two genera were mixed (Aspergillus trypA with Neurospora tryp-1 or Aspergillus trypC with Neurospora tryp-2), a hybrid glutamine-dependent anthranilate synthetase was obtained which showed less than half the activity produced in homologous combinations.This study was supported by Grant GB 22655 from the National Science Foundation to J.A.DeM.  相似文献   

8.
Both uncomplexed subunits of the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium have an absolute requirement for divalent metal ions which can be satisfied by Mg2+, Mn2+, or Co2+. The metal ion kinetics for uncomplexed anthranilate synthetase give biphasic double-reciprocal plots and higher apparent Km values than those for anthranilate synthetase in the enzyme complex. In contrast, the apparent Km values for phosphoribosyltransferase are the same whether the enzyme is uncomplexed or complexed with anthranilate synthetase. This suggests that the metal ion sites on anthranilate synthetase, but not those on phosphoribosyltransferase, are altered upon formation of the enzyme complex. These results and the results of studies reported by others, suggest that complex formation between anthranilate synthetase and phosphoribosyltransferase leads to marked alterations at the active site of the former, but not the latter enzyme. Uncomplexed anthranilate synthetase can be stoichiometrically labeled with Co(III) under conditions which lead to inactivation of 75% of its activity. A comparison of the effects of anthranilate and tryptophan on phosphoribosyltransferase activity in the uncomplexed and complexed forms shows that anthranilate, but not tryptophan, inhibits the uncomplexed enzyme. The complexed phosphoribosyltransferase shows substrate inhibition by anthranilate binding to the phosphoribosyltransferase subunits. In contrast, in a tryptophan-hypersensitive variant complex, anthranilate inhibits phosphoribosyltransferase activity by acting on the anthranilate synthetase subunits. The data are interpreted to mean that there are two classes of binding sites for anthranilate, one on each type of subunit, which may participate in the regulation of anthranilate synthetase and phosphoribosyltransferase under different conditions.  相似文献   

9.
A strain of Escherichia coli in which the glutamine amidotransferase function (anthranilate synthetase component II) of anthranilate synthetase has been deleted synthesizes tryptophan using NH3-dependent anthranilate synthetase component I (AS-I). In NH3-limited media this strain is a tryptophan auxotroph. Mutants that acquired the capacity to grow in NH3-limited media were isolated. Growth of mutant strains in NH3-limited media correlates with increased AS-I activity. Glutamine-dependent AS activity was not found in any of the mutant strains indicating that another glutamine amidotransferase had not been recruited to function with AS-I.  相似文献   

10.
Potato cell suspension cultures (Solanum tuberosumL. cv. Merrimack) have been selected which are resistant to growth inhibition by D,L-5-methyltryptophan. Anthranilate synthetase activity in crude extracts from resistant cells was less sensitive to feedback inhibition by L-tryptophan and D,L-5-methyltryptophan than the activity from the sensitive line. This altered feedback control apparently accounts for the cell's resistance to growth inhibition since there is a 48-fold increase in free tryptophan in one of the resistant cell lines. Preparative polyacrylamide gel electro-phoresis separated feedback-sensitive and -resistant forms of anthranilate synthetase in extracts from both 5-methyltryptophan-susceptible and -resistant cells, with a predominance of the corresponding form in the respective cell type. The anthranilate synthetase activity from the 5-methyltryptophan-resistant line was inactivated more slowly by incubation of crude extracts at 50°C than the activity from the sensitive line. These results suggest the presence of two isoenzymes of anthranilate synthetase in cultured potato cells.  相似文献   

11.
Optimal culture conditions for microbial production of tryptophan synthetase were studied. It was found that on cultivation of Escherichia coli 476, a tryptophan auxotroph, in a medium containing 5g/liter glycerol as C source, supplemented with 1 g/liter of acid-treated peptone, cells with high tryptophan synthetase activity could be obtained.

The enzyme was extracted from cells and 3-fold purified by heat treatment and ammonium sulfate precipitation. The overall yield of the isolation procedure was 60%.

The partially purified tryptophan synthetase was entrapped in cellulose triacetate fibres. Under storage conditions, in refrigerator, the entrapped enzyme was stable at least for 6 months. The activity of the entrapped enzyme was about 75% with respect to the free enzyme.

Similar behaviour for the free and entrapped enzyme was observed as to the effect of temperature and pH on the enzymic activity. The operational stability of the entrapped tryptophan synthetase was very good (activity unchanged after 50 days) provided the accumulation of indole on the fibres was avoided.  相似文献   

12.
Lysates of Escherichia coli Ymel obtained from cultures grown in the absence of tryptophan in minimal medium supplemented with 0.1% casein hydrolysate show an approximate fivefold increase in steady-state specific activity of both anthranilate synthetase and tryptophan synthetase A protein relative to cultures grown in nonsupplemented medium. In the presence of repressing levels of exogenous tryptophan, growth of cultures in casein hydrolysate-supplemented medium results in a noncoordinate enhancement of repression of 10-fold for anthranilate synthetase and twofold for tryptophan synthetase A protein. Similar, but less pronounced, effects are shown for strain W3110. Strains possessing tryptophan regulator gene mutations do not exhibit this first effect, but do yield an approximate twofold decrease in specific activity of both enzymes when grown in medium supplemented with tryptophan and casein hydrolysate. A stimulation of derepression of both enzymes in strain Ymel equivalent to that induced by casein hydrolysate can be reproduced by growth in minimal medium supplemented with threonine, phenylalanine, tyrosine, serine, glutamic acid, and glutamine. Doubling time in this medium is not significantly different from that in minimal medium. An enhancement of repression which partially mimics that observed on growth in medium supplemented with tryptophan plus casein hydrolysate is obtained when Ymel is grown on medium supplemented with tryptophan plus methionine. Threonine or phenylalanine plus tyrosine as separate medium supplements are independently capable of producing a 1.4-fold or 3.4-fold stimulation, respectively, but in combination only the phenylalanine plus tyrosine effect is manifested unless serine and glutamic acid or glutamine are included. Our data show that expression of the tryptophan biosynthetic enzymes can be significantly influenced in vivo as a result of growth in medium supplemented with a variety of amino acids.  相似文献   

13.
The regulation of tryptophan biosynthesis in Pseudomonas aeruginosa   总被引:21,自引:0,他引:21  
Summary Eighteen auxotrophs of Pseudomonas aeruginosa requiring l-tryptophan for growth were isolated following nitrosoguanidine mutagenesis. Mutant blocks for each step of tryptophan biosynthesis were identified by enzymological assay. A regulatory mutant was characterized which was simultaneously constitutive for the gene products of trpA, trpB and trpD. Another class of regulatory mutant appears to synthesize tryptophan synthetase (i.e., trpE and trpF subunits) constitutively. The results implicate three control entities in the pathway of tryptophan biosynthesis: (i) The gene products of trpA, trpB and trpD are repressible by tryptophan, the range of enzyme specific activity varying at least fifty-fold. (ii) No regulation of the trpC gene product could be demonstrated, indicating that its synthesis is constitutive. (iii) The gene products of rpE and trpF are inducible by indoleglycerol 3-phosphate; the magnitude of induction can exceed 100-fold. These results together with some genetic data indicate a general similarity in gene-enzyme relationships between P. aeruginosa and P. putida. A number of specific differences that distinguish the two species are noted.A mutant blocked in the common pathway of aromatic biosynthesis was used to prove that enzymes of tryptophan biosynthesis other than tryptophan synthetase are not inducible by precursors of the common pathway such as chorismate. It is concluded that the concentration of tryptophan that signals total repression of the gene products of trpA, trpB and trpD is lower than the concentrations necessary for maximal feedback inhibition of anthranilate synthetase and for abolition of the induction of tryptophan synthetase.  相似文献   

14.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

15.
Tryptophan Synthetic Pathway and Its Regulation in Chromobacterium violaceum   总被引:13,自引:11,他引:2  
Extracts of Chromobacterium violaceum catalyzed all of the reactions involved in synthesizing tryptophan from chorismic acid. Tryptophan auxotrophs which had lost any of these activities did not produce the characteristic purple pigment, violacein, when grown on a medium in which tryptophan was limiting. Gel filtration of extracts allowed us to estimate molecular weights for the tryptophan enzymes. All of the enzymes appeared to have molecular weights below 100,000. No enzymes were observed to occur in aggregates. The specific activities of the enzymes of the tryptophan pathway did not change when mutants were grown under conditions of limiting or excess tryptophan. The first enzyme in the pathway, anthranilate synthetase, was subject to feedback control by the end product, tryptophan. Tryptophan acted as a noncompetitive inhibitor with respect to glutamine, one of the substrates for anthranilate synthetase, and as a competitive inhibitor of the reaction when chorismate, the other substrate, was varied. The nonlinearity observed in the Lineweaver-Burk plot in the latter case suggests that there may be more than one chorismate-binding site on anthranilate synthetase.  相似文献   

16.
Tryptophan synthetase in Euglena gracilis strain G   总被引:3,自引:0,他引:3  
The five enzyme activities in the synthesis of l-tryptophan have been obtained in extracts of Euglena gracilis. One of these, tryptophan synthetase, has been studied in detail. The general catalytic properties of tryptophan synthetase, including the range of reactions catalyzed and its substrate and cofactor affinities, are similar to those reported for other organisms. The Euglena enzyme has two properties never previously observed for tryptophan synthetase. First, the rate of catalysis of the conversion of indole-glycerol phosphate to l-tryptophan remained at its maximal value and was unaffected by the ionic environment up to 0.3 m KCl. In contrast, the conversion of indole to tryptophan showed a sharp maximum at 0.08 m KCl. Second, the enzyme is a component of a complex that includes every enzyme in the pathway committed to tryptophan biosynthesis with the exception of anthranilate synthetase, the regulatory enzyme.  相似文献   

17.
A corn (Zea mays L.) mutant, blue fluorescent-1 (bf), is described that shows ultraviolet light induced blue fluorescence in young seedling leaves if homozygous for the mutant gene, and in anthers if either homozygous or heterozygous. The blue fluorescent compounds were extracted with acetone and separated by paper chromatography. Anthranilic acid was present and the beta-glucoside was also identified by paper chromatography and beta-glucosdase and acid treatment. A third major fluorescent compound was not identified, but it was convertible to anthranilic acid by acid treatment. Anthranilate synthetase from mutant plants was 3-40 times more active and was also more resistant to feedback inhibition by tryptophan than was the enzyme from normal plants. The high activity and feedback resistance would both lead to anthranilate accumulation. Anthranilate-phosphoribosylpyrophosphate phosphoribosyltransferase (PR transferase), the enzyme which usually utilizes anthranilate in the tryptophan pathway, was inhibited by the beta-glucoside of anthranilic acid in a noncompetitive manner and showed very little activity in the mutant plant extract. This inhibition of the enzyme which utilizes anthranilate would also lead to accumulation. Apparently the oversynthesis of anthranilate leads to the formation of the beta-glucoside, which inhibits anthranilate utilization. The fluorescent compounds are absent in seed, but form on germination. The levels decrease with age after 35 days postgermination, but are still present in leaves during grain filling.  相似文献   

18.
Soybean [Glycine max (L.) Merr.] embryogenic cultures were transformed by particle bombardment with the feedback-insensitive tobacco anthranilate synthase (AS) gene ASA2 driven by the CaMV 35S promoter and selected using hph as the selectable marker gene. Only one of eight regenerated lines that set seed and contained ASA2 expressed the gene highly and contained increased free tryptophan (Trp) levels in leaves, seeds and embryogenic cultures. Leaf extracts of the ASA2 expressing line contained about twice as much AS enzyme activity as the untransformed control and this activity was only slightly more feedback-insensitive. Amino acid analysis showed that both leaves and embryogenic tissue cultures of the ASA2 expressing line had four to five-times the normal levels of free Trp and slightly higher free tyrosine and phenylalanine. The seed total Trp content was only slightly increased. Metabolic profiling-analysis by GC-MS detected no other consistent differences. These studies show that the ASA2 gene can be expressed in soybean and that modest changes in Trp synthesis occurs.  相似文献   

19.
The binding of Mn2+ to the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium was examined by electron paramagnetic resonance studies. Two types of binding sites were observed: one to two tight sites with a dissociation constant of 3–5 μm and five to six weaker sites with a dissociation constant of 40–70 μm. The activator constant for Mn2+ was found to be 9 μm for the glutamine-linked anthranilate synthetase activity and 4 μm for the phosphoribosyltransferase activity. These values are both in the range of the dissociation constant for the tight sites. Water proton relaxation rate measurements showed that the binary enhancement values for both classes of sites were equivalent, ?b = 10.7 ± 2.0. The addition of chorismate to the Mn2+-enzyme complexes when predominantly the tight Mn2+ sites were occupied resulted in a large decrease in the observed enhancement (?T = 2.0). Addition of 5-phosphoribosyl-1-pyrophosphate to the enzyme-Mn2+ complexes caused large decreases in the water proton relaxation rate (?T = 1.5) when tight or tight plus weaker Mn2+ sites were occupied. No changes in the water proton relaxation rate were observed when glutamine, pyruvate, or anthranilate were added; a small decrease was observed when enzyme-Mn2+ was titrated with tryptophan. Tryptophan significantly altered the effect of the binding of chorismate but not of 5-phosphoribosyl-1-pyrophosphate. The effect of tryptophan on the water proton relaxation rate of a Mn2+-enzyme-chorismate complex using a variant enzyme complex which is tryptophan hypersensitive (P. D. Robison, and H. R. Levy, 1976, Biochim. Biophys. Acta. 445, 475–485) occurred at lower concentrations than for the normal enzyme complex. The uncomplexed anthranilate synthetase subunit was titrated with Mn2+ and found to have one to two binding sites with a dissociation constant of 300 ± 100 μm. This dissociation constant is much larger than the activator constant for Mn2+ for uncomplexed anthranilate synthetase which was determined to be 4 μm. These results indicate that the Mn2+-binding sites on anthranilate synthetase are altered when the enzyme complex is formed and that both chorismate and 5-phosphoribosyl-1-pyrophosphate interact closely with enzyme-bound Mn2+ or cause a large effect upon its environment.  相似文献   

20.
Regulation of Tryptophan Biosynthetic Enzymes in Neurospora crassa   总被引:7,自引:4,他引:3       下载免费PDF全文
The formation of enzymatic activities involved in the biosynthesis of tryptophan in Neurospora crassa was examined under various conditions in several strains. With growth-limiting tryptophan, the formation of four enzymatic activities, anthranilic acid synthetase (AAS), anthranilate-5-phosphoribosylpyrophosphate phosphoribosyl transferase (PRAT), indoleglycerol phosphate synthetase (InGPS), and tryptophan synthetase (TS) did not occur coordinately. AAS and TS activities began to increase immediately, whereas PRAT and InGPS activities began to increase only after 6 to 12 hr of incubation. In the presence of amitrole (3-amino-1,2,4-triazole), the formation of TS activity in a wild-type strain was more greatly enhanced than were AAS and InGPS activities. With a tr-3 mutant, which ordinarily exhibits an elevated TS activity, amitrole did not produce an increase in TS activity greater than that observed on limiting tryptophan. With tr-3 mutants, the increased levels of TS activity could be correlated with the accumulation of indoleglycerol in the medium; prior genetic blocks which prevented or reduced the synthesis of indoleglycerol also reduced the formation of TS activity. The addition of indoleglycerol to cultures of a double mutant (tr-1, tr-3) which could not synthesize indoleglycerol markedly stimulated the production of TS activity but not PRAT activity; the production of TS activity reached the same level with limiting or with excess tryptophan. A model explaining these and other related observations on enzyme formation in N. crassa is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号