首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Vacuolar H+-ATPase (V-ATPase), an electrogenic proton pump, is highly expressed in Plasmodium falciparum, the human malaria parasite. Although V-ATPase-driven proton transport is involved in various physiological processes in the parasite, the overall features of the V-ATPase of P. falciparum, including the gene organization and biogenesis, are far less known. Here, we report cDNA cloning of proteolipid subunit c of P. falciparum, the smallest and most highly hydrophobic subunit of V-ATPase. RT-PCR analysis as well as Northern blotting indicated expression of the proteolipid gene in the parasite cells. cDNA, which encodes a complete reading frame comprising 165 amino acids, was obtained, and its deduced amino acid sequence exhibits 52 and 57% similarity to the yeast and human counterparts, respectively. Southern blot analysis suggested the presence of a single copy of the proteolipid gene, with 5 exons and 4 introns. Upon transfection of the cDNA into a yeast null mutant, the cells became able to grow at neutral pH, accompanied by vesicular accumulation of quinacrine. In contrast, a mutated proteolipid with replacement of glutamate residue 138 with glutamine did not lead to recovery of the growth ability or vesicular accumulation of quinacrine. These results indicated that the cDNA actually encodes the proteolipid of P. falciparum and that the proteolipid is functional in yeast.  相似文献   

7.
8.
9.
10.
11.
12.
Recently, two distinct cDNA clones encoding the catalytic subunit of the vacuolar H+-ATPase (V-ATPase) were isolated from the allotetraploid cotton species Gossypium hirsutum L. cv Acala SJ-2 (Wilkins 1992, 1993). Differences in the nucleotide sequence of these clones were used as molecular markers to explore the organization and structure of the V-ATPase catalytic subunit genes in the A and D genomes of diploid and allotetraploid cotton species. Nucleotide sequencing of polymerase chain reaction (PCR) products amplified from G. arboreum (A2, 2n=26), G. raimondii (D5, 2n=26), and G. hirsutum cv Acala SJ-2 [(AD)1, 2n=4x=52] revealed a V-ATPase catalytic subunit organization more complex than indicated hitherto in any species, including higher plants. In the genus Gossypium, the V-ATPase catalytic subunit genes are organized as a superfamily comprising two diverse but closely related multigene families, designated as vat69A and vat69B, present in both diploid and allotetraploid species. As expected, each vat69 subfamily is correspondingly more complex in the allotetraploid species due to the presence of both A and D alloalleles. Because of this, about one-half of the complex organization of V-ATPase catalytic subunit genes predates polyploidization and speciation of New World tetraploid species. Comparison of plant and fungal V-ATPase catalytic subunit gene structure indicates that introns accrued in the plant homologs following the bifurcation of plant and fungi but prior to the gene duplication event that gave rise to the vat69A and vat69B genes approximately 45 million years ago. The structural complexity of plant V-ATPase catalytic subunit genes is highly conserved, indicating the presence of at least ten introns dispersed throughout the coding region.  相似文献   

13.
The osteoclast variant of the vacuolar H+-ATPase (V-ATPase) is a potential therapeutic target for combating the excessive bone resorption that is involved in osteoporosis. The most potent in a series of synthetic inhibitors based on 5-(5,6-dichloro-2-indolyl)-2-methoxy-2,4-pentadienamide (INDOL0) has demonstrated specificity for the osteoclast enzyme, over other V-ATPases. Interaction of two nitroxide spin-labeled derivatives (INDOL6 and INDOL5) with the V-ATPase is studied here by using the transport-active 16-kDa proteolipid analog of subunit c from the hepatopancreas of Nephrops norvegicus, in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Analogous experiments are also performed with vacuolar membranes from Saccharomyces cerevisiae, in which subunit c of the V-ATPase is replaced functionally by the Nephrops 16-kDa proteolipid. The INDOL5 derivative is designed to optimize detection of interaction with the V-ATPase by EPR. In membranous preparations of the Nephrops 16-kDa proteolipid, the EPR spectra of INDOL5 contain a motionally restricted component that arises from direct association of the indolyl inhibitor with the transmembrane domain of the proteolipid subunit c. A similar, but considerably smaller, motionally restricted population is detected in the EPR spectra of the INDOL6 derivative in vacuolar membranes, in addition to the larger population from INDOL6 in the fluid bilayer regions of the membrane. The potent classical V-ATPase inhibitor concanamycin A at high concentrations induces motional restriction of INDOL5, which masks the spectral effects of displacement at lower concentrations of concanamycin A. The INDOL6 derivative, which is closest to the parent INDOL0 inhibitor, displays limited subtype specificity for the osteoclast V-ATPase, with an IC50 in the 10-nanomolar range.  相似文献   

14.
Large-conductance Ca2+-activated K+ (BKCa) channels are widely distributed in cellular membranes of various tissues, but have not previously been found in cardiomyocytes. In this study, we cloned a gene encoding the mouse cardiac BKCa channel α-subunit (mCardBKa). Sequence analysis of the cDNA revealed an open reading frame encoding 1154 amino acids. Another cDNA variant, identical in amino acid sequence, was also identified by sequence analysis. The nucleotide sequences of the two mCardBKa cDNAs, type 1 (mCardBKa1) and type 2 (mCardBKa2), differed by three nucleotide insertions and one nucleotide substitution in the N-terminal sequence. The amino acid sequence demonstrated that mCardBKa was a unique BKCa channel α-subunit in mouse cardiomyocytes, with amino acids 41-1153 being identical to calcium-activated potassium channel SLO1 and amino acids 1-40 corresponding to BKCa channel subfamily M alpha member 1. These findings suggest that a unique BKCa channel α-subunit is expressed in mouse cardiomyocytes.  相似文献   

15.
Glucosinolates are defensive compounds found in several plant families. We recently described five distinct isoforms of a novel plant enzyme, thiol methyltransferase (TMT), which methylate the hydrolysis products of glucosinolates to volatile sulfur compounds that have putative anti-insect and anti-pathogen roles. In the work presented here, two cDNAs encoding these enzymes (cTMT1 and cTMT2) were isolated by screening a cabbage cDNA library with an ArabidopsisEST showing high sequence homology to one TMT isoform. The genomic clone of cTMT1 was subsequently amplified by PCR. Both cDNAs encoded polypeptides of identical lengths (227 amino acids) and similar predicted masses (ca. 25 kDa), but differing in 13 residues. The cDNAs contained the typical methyltransferase signatures, but were otherwise distinct from conventionally known N-, O-or S-methyltransferases. A chloride methyl transferase was the only gene with an assigned function that shared significant similarity with the TMT cDNAs. Southern analysis indicated single copy for each TMT gene. The two cDNAs were expressed in Escherichia coli. The substrate range, kinetic properties and molecular sizes of the purified recombinant proteins were comparable to those of the native enzyme. These data, together with the detection of the sequenced amino acid motif of one native TMT peptide in the cDNAs, confirmed that the latter were authentic TMTs. The expression pattern of the TMTs in various cabbage tissues was consistent with their association with glucosinolates. The cloning of this new class of plant genes furnishes crucial molecular tools to understand the role of this metabolic sector in plant defenses against biotic stress.  相似文献   

16.
Molecular characterization of the yeast vacuolar H+-ATPase proton pore   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is composed of at least 13 polypeptides organized into two distinct domains, V(1) and V(0), that are structurally and mechanistically similar to the F(1)-F(0) domains of the F-type ATP synthases. The peripheral V(1) domain is responsible for ATP hydrolysis and is coupled to the mechanism of proton translocation. The integral V(0) domain is responsible for the translocation of protons across the membrane and is composed of five different polypeptides. Unlike the F(0) domain of the F-type ATP synthase, which contains 12 copies of a single 8-kDa proteolipid, the V-ATPase V(0) domain contains three proteolipid species, Vma3p, Vma11p, and Vma16p, with each proteolipid contributing to the mechanism of proton translocation (Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997) J. Biol. Chem. 272, 4795-4803). Experiments with hemagglutinin- and c-Myc epitope-tagged copies of the proteolipids revealed that each V(0) complex contains all three species of proteolipid with only one copy each of Vma11p and Vma16p but multiple copies of Vma3p. Since the proteolipids of the V(0) complex are predicted to possess four membrane-spanning alpha-helices, twice as many as a single F-ATPase proteolipid subunit, only six V-ATPase proteolipids would be required to form a hexameric ring-like structure similar to the F(0) domain. Therefore, each V(0) complex will likely be composed of four copies of the Vma3p proteolipid in addition to Vma11p and Vma16p. Structural differences within the membrane-spanning domains of both V(0) and F(0) may account for the unique properties of the ATP-hydrolyzing V-ATPase compared with the ATP-generating F-type ATP synthase.  相似文献   

17.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

18.
Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed. Received: 27 August 1997 / Accepted: 14 January 1998  相似文献   

19.
The macrolide antibiotic concanamycin is a potent and specific inhibitor of the vacuolar H(+)-ATPase (V-ATPase), binding to the V(0) membrane domain of this eukaryotic acid pump. Although binding is known to involve the 16 kDa proteolipid subunit, contributions from other V(0) subunits are possible that could account for the apparently different inhibitor sensitivities of pump isoforms in vertebrate cells. In this study, we used a fluorescence quenching assay to directly examine the roles of V(0) subunits in inhibitor binding. Pyrene-labeled V(0) domains were affinity purified from Saccharomyces vacuolar membranes, and the 16 kDa proteolipid was subsequently extracted into chloroform and methanol and purified by size exclusion chromatography. Fluorescence from the isolated proteins was strongly quenched by nanomolar concentrations of both concanamycin and an indolyl pentadieneamide compound, indicating high-affinity binding of both natural macrolide and synthetic inhibitors. Competition studies showed that these inhibitors bind to overlapping sites on the proteolipid. Significantly, the 16 kDa proteolipid in isolation was able to bind inhibitors as strongly as V(0) did. In contrast, proteolipids carrying mutations that confer resistance to both inhibitors showed no binding. We conclude that the extracted 16 kDa proteolipid retains sufficient fold to form a high-affinity inhibitor binding site for both natural and synthetic V-ATPase inhibitors and that the proteolipid contains the major proportion of the structural determinants for inhibitor binding. The role of membrane domain subunit a in concanamycin binding and therefore in defining the inhibitor binding properties of tissue-specific V-ATPases is critically re-assessed in light of these data.  相似文献   

20.
In the absence of a high-resolution structure for the vacuolar H+-ATPase, a number of approaches can yield valuable information about structure/function relationships in the enzyme. Electron microscopy can provide not only a representation of the overall architecture of the complex, but also a low-resolution map onto which structures solved for individually expressed subunits can be fitted. Here we review the possibilities for electron microscopy of the Saccharomyces V-ATPase and examine the suitability of V-ATPase subunits for expression in high yield prokaryotic systems, a key step towards high-resolution structural studies. We also review the role of experimentally-derived structural models in understanding structure/function relationships in the V-ATPase, with particular reference to the complex of proton-translocating 16 kDa proteolipids in the membrane domain of the V-ATPase. This model in turn makes testable predictions about the sites of binding of bafilomycins and the functional interactions between the proteolipid and the single-copy membrane subunit Vph1p, with implications for the constitution of the proton translocation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号