首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Casadevall  L A Day 《Biochemistry》1983,22(20):4831-4842
Ag+ binding and Hg2+ binding to both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) have been examined in some detail, and the results have been applied to study the structures of circular ssDNA in several filamentous viruses. It has been known for some time that Ag+ and Hg2+ bind to the bases of DNA producing characteristic large changes in absorbance and circular dichroism (CD) spectra, as well as changes in sedimentation rates. In the case of Ag+, it is known that there are three modes of binding to isolated dsDNA, referred to as types I, II, and III. Type III binding, by definition, occurs when Ag+ binds to Ag-dsDNA complexes having sites for binding types I and II extensively occupied, if not saturated. It produces CD spectra, assigned in this study, and absorbance spectra that are isosbestic with those of the Ag-dsDNA complexes present prior to its onset. In phosphate buffers binding is restricted to types I and II, whereas in borate buffers weaker type III binding can occur. Characteristics of types I, II, and III were observed for the DNAs in fd, If1, IKe, and Xf, but not for those in Pf1 and Pf3. Similarly, many of the spectral changes seen when Hg2+ binds to isolated double-stranded DNA are mimicked by Hg2+ binding to the DNAs within fd, IKe, If1, and Xf, but not for those in Pf1 and Pf3. The Ag+ and Hg2+ results indicate the presence of right-handed DNA helices in fd, If1, IKe, and Xf, with the two antiparallel strands of the covalently closed single-stranded DNAs having the bases directed toward the virion axes. For Pf1 and Pf3, Ag+ and Hg2+ binding cause large absorbance changes but only small CD changes. The very different results for Pf1 and Pf3 are consistent with the presence of inverted DNA structures (I-DNA) with the bases directed away from the structure axes, but the two structures differ from one another. Sedimentation velocity changes with Ag+ and Hg2+ binding strongly suggest structural linkages between the DNA and the surrounding protein sheath in each of the viruses.  相似文献   

2.
3.
E C Ong  C Snell  G D Fasman 《Biochemistry》1976,15(3):468-477
The ionic strength dependence of the complexes between DNA and both random, (Lysx, Leuy)n, and block copolymers, (Lysx)n(Leuy)m, of lysine and leucine, with different amino acid compositions, was studied using circular dichroism (CD) as the probe to detect conformational differences in these complexes relative to native DNA. It was found that the CD spectra of complexes of both the random (Lys84, Leu16)n and block (Lys85)n(Leu15)m copolymers with DNA show a very sharp ionic strength dependence. The maximum altered CD spectrum for the complexes with the block copolymer was found to occur at the same ionic strength as that for poly(L-lysine)-DNA complexes, while the maximum CD change for the random copolymer complex occurred at a slightly lower ionic strength. This sharp dependence of the CD change on the ionic strength was found to be independent of the polymer/DNA ratio, r, for each individual copolymer. The CD spectra for these complexes at optimum NaCl concentration resemble those of the psi spectra of DNA [Jordan, C. F., Lerman, L.S., and Venable, J.H. (1972), Nature (London), New Biol. 236, 67]. The complexes of the random copolymer, (Lys68, Leu32)n, with DNA (r=0.25) at 0.15 M NaCl and below have CD spectra that resemble the A-form DNA spectra. The ionic strength dependence of the CD spectra of this complex is not as sharp as observed with the above polymers and has a broad positive plateau. It is suggested that both the CD spectra of these complexes reflect the phenomena of DNA condensation into a higher order asymmetric structure (folded and compact). The block copolymer, (Lys77)n(Leu23)m, complexes with DNA show very slight alterations in the CD spectra, with respect to native DNA. It appears that the long Leu sequence at one end of such copolymers may be unpropitious for causing the polypeptide-DNA complex to condense into a higher order asymmetric structure. Thus the importance of the distribution of hydrophobic residues, in the copolypeptides of Lys, is shown for causing condensation of complexes with DNA. The relevance of these findings to histone-DNA complexes in chromatin is discussed.  相似文献   

4.
Exposing native calf thymus DNA to increasing concentrations of Hg(ClO4)2 not only produces dramatic changes in its circular dichroism (CD) but results also in the decrease, and ultimate cessation, of endonucleolytic DNA cleavage by staphylococcal nuclease. Let r = [moles of added Hg(II)]/[mole of DNA base]: the conservative CD spectrum of the DNA B-form becomes nonconservative in appearance at 0.01 less than r less than 0.12 (resembling DNA in C-form geometry) and assumes the spectral characteristics of a left-handed DNA double helix at 0.12 less than r less than or equal to 1.0. DNA cleavage proceeds at or near the rates exhibited by untreated DNA at 0 less than r less than 0.08. At Hg(II) levels of 0.08 less than r less than 0.5, the rate of DNA hydrolysis decreases monotonically with increasing Hg(II) concentrations, and at r greater than 0.4, DNA cleavage ceases. Both the CD changes and the changes in the rate of DNA digestion are totally reversible upon the removal of Hg(II), at least up to r = 1.0, demonstrating that Hg(II) keeps all base pairs in register. For comparison purposes, native calf thymus DNA was also treated with methylmercury [CH3Hg(II)], an agent known to disrupt the secondary structure of DNA. The treatment yielded single-stranded methylmercurated DNA with preserved right-handed helix screwness. In addition, this DNA is digested by staphylococcal nuclease much more rapidly than double-stranded control DNA. Lastly, neither the CD nor the cleavage rate changes are reversible upon the removal of methylmercury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Circular dichroism (CD) and fluorescence spectra have been measured for complexes formed between four-stranded G4-DNA and ethidium bromide (EB). The EB-G4-DNA complexes showed similar induced CD spectra, compared with the induced CD spectrum of the EB-calf thymus DNA complex.  相似文献   

6.
Under certain conditions of preparation, DNA, whether free or complexed with polylysine or histone KAP (I, fl), produce huge negative circular dichroism (CD) spectra with maxima at about 270nm. In order to investigate the cause of these spectra, reconstituted polylysine-DNA complex was used as a model system. It was found that the CD change of DNA in the complex is not a linear function of the fraction of base pairs bound. Such a CD spectrum is not changed despite dilution up to 128 folds for as long as 12 hours. Difference CD spectra taken between free DNA and any of the complexes are qualitatively the same, and are similar to those of free DNA and nucleohistone KAP (Fasman et al., Biochemistry 9, 2814-2822, 1970), free DNA and direct mixed polylysine-DNA complexes, or free DNA in high salt (Chang et al., Biochemistry12, 3028-3032, 1973). The suggestion is made that this CD spectrum might be caused by specific conformational changes in DNA, perhaps belonging to the family of B to C transitions followed by a further structural distortion of DNA due to aggregation of the nucleoprotein molecules.  相似文献   

7.
We have investigated the X-ray and optical properties (CD spectra and polarization microscopy) of liquid-crystalline phases and dispersions formed on pretreatment of low molecular weight DNA with the platinum(II) coordination complexes, cis-diammine-dichloroplatinum(II) (DDP), 2,2'-bipyridinedichloroplatinum(II) (1) and 2,2'-bipyridineethylenediammineplatinum(II) (2). It is demonstrated that the platination of DNA leads to the ordering of neighbouring molecules of DNA in liquid-crystalline phases being diminished. The intense bands observed in the CD spectra of liquid-crystalline dispersions prepared from DNA pretreated with 1 or 2 can be used to determine the orientation of the latter compounds with respect to the helical axis of the DNA and to detect distortions in the secondary structure of DNA. The possible causes of the appearance of the intense bands in the CD spectra of liquid-crystalline phases and alterations in the manner of packing of the molecules of DNA within them are discussed.  相似文献   

8.
A J Adler  E C Moran  G D Fasman 《Biochemistry》1975,14(19):4179-4185
Two histones from calf thymus, the slightly lysine-rich histone f2a2 and the arginine-rich f3, were combined separately, with homologous DNA. The complexes were reconstituted by means of guanidine hydrochloride gradient dialysis, and their circular dichroic (CD) spectra were examined in 0.14 M NaCl. The CD spectra of f2a2-DNA complexes are characterized by a positive band at 272 nm which is blue-shifted and greatly enhanced relative to the corresponding band for native DNA. This type of CD change was noted previously with f2a1-DNA and f2b-DNA complexes. In contrast, f3 histone causes only minor distortions in the DNA CD spectrum, and their character depends upon the state of the two sulfhydryl groups in f3. When the cysteines are reduced, f3-DNA complexes have a slightly increased positive band with a small blue shift; when oxidized disulfide is the predominant form, this CD band becomes slightly smaller than native DNA value. This laboratory has now examined complexes reconstituted from DNA and all five histones of calf thymus. The sum of the CD spectra of these complexes, although very similar to the CD curve for reconstituted complexes containing whole histone, does not approximate that of chromatin; the consequence of this observation is discussed.  相似文献   

9.
Raman difference spectrophotometry has been used to study the interaction of CH3Hg(II) with cytidine and Ado-5'-P at high pH. In contrast to the binding reactions which occur at lower pH or in non-aqueous solvents such as dimethyl sulfoxide, a proton is transferred from the amino group; and the complexes are CH3HgCydH-1 and CH3HgAdoH-1-5'-P. The spectra are significantly different from those of the cationic complexes. The integrated intensities of ligand modes which shift upon metalation can be used to measure the concentration of unreacted ligand and consequently the extent of the reaction. Equilibrium constants for the reactions CH3HgOH + L yields CH3HgLH-1 + H2O were estimated to be log KCyd equals 0.63 plus or minus 0.05 and log KAdo-5'-P equals 0.85 plus or minus 0.05, in fair agreement with values determined under very different conditions by ultraviolet spectrophotometry. The vibrational spectrum of the ligand in CH3HgCydH-1 is virtually the same as that of UrdH-1- which is isoelectronic. The spectrum of the ligand in CH3HgAdoH-1-5'-P is more similar to the isoelectronic base InoH-1-than to Ado-5'-P, although the resemblance is not so close as in the CydH-1---UrdH-1-case. The structures of these complexes are discussed on the basis of their vibrational spectra and similarities in the spectra of related compounds. It is concluded that the CH3Hg(II) binds to the amino nitrogen at high pH with both cytidine and Ado-5'-P. In neutral solution with excess CH3Hg(II), metalation occurs on the amino groups, on the ring, and also on the ribose.  相似文献   

10.
Shi S  Yao TM  Geng XT  Jiang LF  Liu J  Yang QY  Ji LN 《Chirality》2009,21(2):276-283
New chiral Ru(II) complexes delta and lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) [(bpy = 2,2'-bipyridine; pyip = (2-(1-pyrenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline] were synthesized and characterized by elemental analysis, (1)H NMR, ESI-MS, IR, and CD spectra. Their DNA-binding properties were studied by means of UV-vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of both enantiomer with CT-DNA. Spectroscopy experiments indicated that each of these complexes could interact with the DNA. The DNA-binding of the Delta-enantiomer was stronger than that of Lambda-enantiomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) bound to DNA by intercalation. At the same time, the DNA-photocleavage properties of the complexes were investigated too. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA.  相似文献   

11.
S R Fish  C Y Chen  G J Thomas  S Hanlon 《Biochemistry》1983,22(20):4751-4756
The derivatives of calf thymus DNA in which n-butylamine is covalently attached as described in the preceding paper in this series [Chen, C. Y., Pheiffer, B. H., Zimmerman, S. B., & Hanlon, S. (1983) Biochemistry (preceding paper in this issue)] were examined by Raman spectroscopy. As previously mentioned, these complexes exhibit profoundly decreased rotational strengths of the positive band of the circular dichroism (CD) spectrum above 260 nm, with the most heavily substituted (ca. 0.12 mol of amine/mol of nucleotide) resembling that of DNA in 11 m LiCl. Raman spectra of all complexes and their controls in the form of either fibers at 98% relative humidity or gels at 40 mg/mL in 20 mM NaCl, pH 7, show typical B-type spectra with no evidence of significant amounts of C, A, Z, or disordered forms. We have thus concluded that the assignment of the nonconservative CD spectrum of DNA typically observed in concentrated electrolyte solutions to a C form is in error. Both these Raman data and the X-ray results reported in the previous paper indicate that the structure giving rise to the C CD spectrum has B-form backbone geometry.  相似文献   

12.
A Casadevall  L A Day 《Biochemistry》1988,27(10):3599-3602
The circular dichroism (CD) of Pfl filamentous virus has been examined over the temperature range 0-40 degrees C, in the absence and presence of Hg(II), Ag(I), and Cu(II). Thermal difference CD spectra were obtained by subtraction of spectra recorded above and below a thermally induced structure transition near 12 degrees C. The thermal difference spectra look like they arise from shifts in two exciton bands, one centered at 230 nm and the other at 290 nm. The amplitudes on either side of a crossover at 230 nm are 10 times those of a crossover at 290 nm. It is proposed that the difference spectra result from thermally induced shifts in coupled oscillator interactions between Tyr40 residues of the coat protein and the guanine and cytosine bases of the DNA. Metal ions can reduce or block these shifts. The changes in ellipticities at 220, 237, and 270 nm induced by changing the temperature have inflections near 12 degrees C. Ag(I) and Hg(II), which are known to bind to the DNA bases in Pfl, reduce or eliminate the inflections in the thermal profiles, depending on the metal ion type and concentration. Cu(II) ions do not affect the profiles. The spectral changes and the effects of the metal ions indicate intimate contact between the DNA bases and the protein subunits in the virion.  相似文献   

13.
A pair of chiral binuclear ruthenium(II) complexes were prepared and their binding affinities towards double stranded native DNA were assessed by observing isotropic absorption, polarized light spectra - circular and linear dichroism (CD and LD), fluorescence quenching and DNA thermal denaturation. Upon binding to DNA, the complexes produced LD signals consisting of positive and negative signals in the absorption region, although they exhibited red shift and hypochromism in the absorption spectrum. These contrasting observations indicated that the binding modes of the complexes are largely deviated from classical intercalative binding. Groove binding of the complexes to DNA was found to be more likely than intercalative binding. The small increase of DNA melting temperature in the presence of the complexes indicated a predominance of DNA groove binding. The absence of “molecular light switch effect” further supported non-intercalative binding. The groove binding propensity of complexes was also supported by comparison of the resulting data with the [Ru(phen)2(dppz)]2+.  相似文献   

14.
Poly[d(A-T).d(A-T)] and poly[d(G-C).d(G-C)], each dissolved in 0.1 M NaClO4, 5 mM cacodylic acid buffer, pH 6.8, experience inversion of their circular dichroism (CD) spectrum subsequent to the addition of Hg(ClO4)2. Let r identical to [Hg(ClO4)2]added/[DNA-P]. The spectrum of the right-handed form of poly[d(A-T).d(A-T)] turns into that of a seemingly left-handed structure at r greater than or equal to 0.05 while a similar transition is noted with poly[d(G-C).(G-C)] at r greater than or equal to 0.12. The spectral changes are highly cooperative in the long-wavelength region above 250 nm. At r = 1.0, the spectra of the two polymers are more or less mirror images of their CD at r = 0. While most CD bands experience red-shifts upon the addition of Hg(ClO4)2, there are some that are blue-shifted. The CD changes are totally reversible when Hg(II) is removed from the nucleic acids by the addition of a strong complexing agent such as NaCN. This demonstrates that mercury keeps all base pairs in register.  相似文献   

15.
A proton NMR study of the glycine-mercury(II) system in aqueous solution   总被引:1,自引:0,他引:1  
The proton NMR spectrum of glycine was monitored in D2O solution as a function of added Hg(II) concentration and pD. Reliable values were established for formation constants for the Hg(II):glycine 1:1 and 1:2 complexes and also for the mixed glycine/deuteroxy and glycine/chloride complexes. Ligand exchange kinetics are relatively slow, and it is possible to observe coupling to 199Hg through the coordinating nitrogen. The formation constants were used to calculate speciation over a range of ligand concentrations for the Hg(II)/glycine and Hg(II)/glycine/chloride systems.  相似文献   

16.
The CD spectra of films of the lithium salt of E. coli and calf thymus DNA, and alternating d-AT : AT were measured as a function of relative humidity. Films of the ammonium acetate salt of DNA were also measured. The ammonium films yield the previously reported A-form CD spectra. A possible explanation for the small magnitude of the 260-nm band of the A-form film spectra compared to double-stranded RNA spectra is that the film DNA is in a different conformation than RNA within the A family of conformations. At relative humidities of 92% or lower, a negative nonconservative CD spectrum with negative minima near 270 and 210 nm is observed with the lithium films. The magnitude of the minima varies from film to film. In films of DNA the magnitude ranges from a delta epsilon of ?5 to ?35; d-AT : AT films show magnitudes to ?300. CD spectra of this type are designated Ψ spectra. Similar spectra have been reported from reconstituted complexes of DNA and polylysine or f-1 histone. If the origins of the film and protein–DNA complex spectra are similar, the complex spectra are not the result of specific secondary structural changes induced in the DNA by the protein fraction. Theoretical analysis suggests that Ψ spectra are not the result of changes in the secondary or tertiary structure of DNA. Instead, the previously proposed explanation based on liquid crystals is favored. The DNA could form asymmetric structures with long-range periodicity. It is likely that the observed CD spectra of f-1 complexes are artifacts of DNA aggregation. The possibility that some other previously published spectra of protein–DNA complexes also reflect artifacts is suggested.  相似文献   

17.
The method of circular dichroism (CD) was used to compare DNA behavior during its interaction with linker histone H1 and with non-histone chromosomal protein HMG1 at different ionic strength and at different protein content in the system. The role of negatively charged C-terminal fragment of HMG1 was analyzed using recombinant protein HMG1-(A + B), which lacks the C terminal amino acid sequence. The psi-type CD spectra were common for DNA interaction with histone H1, but no spectra of this type were observed in HMG1-DNA systems even at high ionic strength. The CD spectrum of the truncated recombinant protein at high salt concentration somewhat resembled the psi-type spectrum. Two very intense positive bands were located near 215 nm and near 273 nm, and the whole CD spectrum was positive. The role of C-terminal tail of HMG1 in formation of the ordered DNA-protein complexes is discussed.  相似文献   

18.
Electronic absorption, circular dichroic (CD), and magnetic circular dichroic (MCD) spectra have been determined for complexes of cobalt(II)-substituted carboxypeptidase A and five reversible inhibitors. Three of the inhibitors, N-(1-carboxy-5-butyloxycarbonylaminopentyl)-L-phenylalanine, (I); (R,S)-2-benzyl-4-oxobutanoic acid, (III); and 2-benzyl-4-oxo-5,5,5-trifluoropentanoic acid, (IV) are mechanism-based inhibitors. Another, N-(1-carboxy-5-carbobenzoxyaminopentyl)-glycyl-L-phenylalanine, (II), is a tight binding, slowly hydrolyzed substrate. The fifth, phosphoramidon, (V), is a mechanism-based inhibitor of thermolysin, and may also bind to carboxypeptidase in a mechanism-based mode. The absorption and CD spectra of the enzyme-inhibitor complexes all differ from the spectrum of the free enzyme and from each other. The MCD spectra indicate that the tetrahedral coordination geometry of cobalt, which is distorted in the free enzyme, is also distorted in the inhibitor complexes, although to various degrees. The complexes of I and III are spectrally similar despite being structurally dissimilar, and that of IV, whose structure resembles III, is spectrally distinct, indicating that I and III, but not IV, may perturb the metal in nearly the same way. The absorption spectrum of IV is identical to that, at high pH, of Co(II)carboxypeptidase in which Glu-270 has been modified by a carbodiimide reagent, possibly pointing to a common perturbation of this residue. The absorption and CD spectra of II are similar to those of the catalytic intermediate that precedes the rate-limiting step in peptide hydrolysis [D. S. Auld, A. Galdes, K. F. Geoghegan, B. Holmquist, R. Martinelli, and B. L. Vallee, Proc. Natl. Acad. Sci. USA 81, 4675-4681 (1984)]. Since II is a substrate, the steady-state bound species that it generates may therefore be a true productive intermediate rather than a nonproductive mimic of an intermediate. The spectra of the complexes with II and V differ considerably despite structural similarities. The negative CD ellipticity of the free enzyme is reversed in sign in the presence of V, a phenomenon previously observed with complexes of Co(II)carboxypeptidase and dipeptides. This resemblance may result from a similar interaction of cobalt with the phosphoramidate group of phosphoramidon and the N-terminal amine of dipeptides. The spectra of reversible, mechanism-based inhibitors permit general structural predictions about true intermediates but require caution when used for assigning precise conformation and ligands of bound catalytic species.  相似文献   

19.
The interaction of newly synthesised water-soluble planar complexes of general structure [Pt(diimine)(N,N-dihydroxyethyl-N'-benzoylthioureato)]+Cl- with DNA was investigated by means of DNA melting studies, CD spectroscopy, and DNA gel mobility studies. Addition of stoichometric amounts of [Pt(diimine)H2L-S,O]Cl complexes to polynucleotides caused a significant increase in the melting temperature of poly(dA-dT) and calf-thymus DNA, respectively, indicating that these complexes interacted with DNA and stabilised the double helical structure. The CD spectra confirmed the relatively strong binding of three related Pt(II) complexes ([Pt(2,2'-bipyridine)H2L-S,O]Cl, [Pt(4,4'-dimethyl-2,2'-bipyridine)H2L-S,O]Cl, and [Pt(1,10-phenanthroline)H2L-S,O]Cl), to DNA. Comparison with the published CD spectra of ethidium bromide/DNA complex suggests a similar intercalation mode of binding. cis-[(4,4'-di-tert-butyl-2,2'-bipyridyl)N,N-di(2-hydroxyethyl)-N'-benzoylthioureatoplatinum(II)] chloride, with its very bulky tert-butyl groups, did not intercalate into the polynucleotide double helix. In DNA mobility studies in the presence of the four [Pt(diimine)H2L-S,O]Cl complexes, only [Pt(2,2'-bipyridine)H2L-S,O]Cl affected the DNA mobility to any detectable extent. Finally, in vivo studies on the biological activity of the complexes, using an Escherichia coli DNA excision repair deficient uvrA mutant strain, indicated that only the [Pt(2,2'-bipyridine)H2L-S,O]Cl complex showed significant cellular toxicity and that this was, in part, linked to DNA damage.  相似文献   

20.
Circular dichroism (CD) was used to study the complexes of DNA (in 0.15M NaCl) with two polypeptides considered as models of the histone molecules. CD spectra in the region of DNA absorption were studied with respect to the concentration used for annealing and to the molecular weight and composition of the DNA used. The properties of supernatants after centrifugation of aggregated complexes were examined. The effect of selectively bound antibiotics (actinomycin D and netropsin) on CD sprectra of complexes was investigated. The induced CD of proflavine molecules bound to DNA in the various complexes was also studied. It was concluded that changes in the CD spectra of DNA in complexes with the polypeptides are due to the formation of chiral superstructures, even if some conformational changes of DNA molecules themselves may also be decisive in some cases. The superstructure is affected by the composition of DNA, the role of (G + C) rich segments being particularly important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号